1. |
Saulnier N, Puglisi MA, Lattanzi W, et al. Gene profiling of bone marrow-and adipose tissue-derived stromal cells: a key role of Kruppel-like factor 4 in cell fate regulation. Cytotherapy, 2011, 13(3): 329-340.
|
2. |
Cramer C, Freisinger E, Jones RK, et al. Persistent high glucose concentrations alter the regenerative potential of mesenchymal stem cells. Stem Cells Dev, 2010, 19(12): 1875-1884.
|
3. |
Cecchinato F, Karlsson J, Ferroni L, et al. Osteogenic potential of human adipose-derived stromal cells on 3-dimensional mesoporous TiO2 coating with magnesium impregnation. Mater Sci Eng C Mater Biol Appl, 2015, 52: 225-234.
|
4. |
张嘉熙, 史册, 刘姗姗, 等.促红细胞生成素促进骨髓基质细胞成骨分化的实验研究.口腔颌面外科杂志, 2014, 24(1): 21-26.
|
5. |
张燕, 文巍, 罗进勇.骨形态发生蛋白9定向诱导多潜能干细胞成骨分化.生物化学与生物物理进展, 2009, 36(10): 1291-1298.
|
6. |
张嘉熙, 邓红燕, 纪茗权, 等.促红细胞生成素及其受体对成骨细胞的作用机制.国际口腔医学杂志, 2015, 42(1): 102-105.
|
7. |
Açil Y, Ghoniem AA, Wiltfang J, et al. Optimizing the osteogenic differentiation of human mesenchymal stromal cells by the synergistic action of growth factors. J Craniomaxillofac Surg, 2014, 42(8): 2002-2009.
|
8. |
Barretto LS, Lessio C, Sawaki e Nakamura AN, et al. Cell kinetics, DNA integrity, differentiation, and lipid fingerprinting analysis of rabbit adipose-derived stem cells. In Vitro Cell Dev Biol Anim, 2014, 50(9): 831-839.
|
9. |
Lee HR, Kim HJ, Ko JS, et al. Comparative characteristics of porous bioceramics for an osteogenic response in vitro and in vivo. PLoS One, 2013, 8(12): e84272.
|
10. |
Tsigkou O, Labbaf S, Stevens MM, et al. Monodispersed bioactive glass submicron particles and their effect on bone marrow and adipose tissue-derived stem cells. Adv Healthc Mater, 2014, 3(1): 115-125.
|
11. |
Kang H, Dang AB, Joshi SK, et al. Novel mouse model of spinal cord injury-induced heterotopic ossification. J Rehabil Res Dev, 2014, 51(7): 1109-1118.
|
12. |
Zhu D, Mackenzie NC, Shanahan CM, et al. BMP-9 regulates the osteoblastic differentiation and calcification of vascular smooth muscle cells through an ALK1 mediated pathway. Cell Mol Med, 2015, 19(1): 165-174.
|
13. |
Huang J, Yuan SX, Wang DX, et al. The role of COX-2 in mediating the effect of PTEN on BMP9 induced osteogenic differentiation in mouse embryonic fibroblasts. Biomaterials, 2014, 35(36): 9649-9659.
|
14. |
Wei Z, Salmon RM, Upton PD, et al. Regulation of bone morphogenetic protein 9 (BMP9) by redox-dependent proteolysis. J Biol Chem, 2014, 289(45): 31150-31159.
|
15. |
Li C, Shi C, Kim J, et al. Erythropoietin promotes bone formation through EphrinB2/EphB4 signaling. J Dent Res, 2015, 94(3): 455-463.
|
16. |
Li C, Ding J, Jiang L, et al. Potential of mesenchymal stem cells by adenovirus-mediated erythropoietin gene therapy approaches for bone defect. Cell Biochem Biophys, 2014, 70(2): 1199-1204.
|
17. |
Rölfing JH, Baatrup A, Stiehler M, et al. The osteogenic effect of erythropoietin on human mesenchymal stromal cells is dose-dependent and involves non-hematopoietic receptors and multiple intracellular signaling pathways. Stem Cell Rev, 2014, 10(1): 69-78.
|
18. |
Aksoy C, Guliyev A, Kilic E, et al. Bone marrow mesenchymal stem cells in patients with beta thalassemia major: molecular analysis with attenuated total reflection-Fourier transform infrared spectroscopy study as a novel method. Stem Cells Dev, 2012, 21(11): 2000-2011.
|
19. |
Kim J, Jung Y, Sun H, et al. Erythropoietin mediated bone formation is regulated by mTOR signaling. Cell Biochem, 2012, 113(1): 220-228.
|
20. |
McGee SJ, Havens AM, Shiozawa Y, et al. Effects of erythropoietin on the bone microenvironment. Growth Factors, 2012, 30(1): 22-28.
|