1. |
Shen Q, Shi P, Gao M, et al. Progress on materials and scaffold fabrications applied to esophageal tissue engineering. Mater Sci Eng C Mater Biol Appl, 2013, 33(4): 1860-1866.
|
2. |
Londono R, Jobe BA, Hoppo T, et al. Esophagus and regenerative medicine. World J Gastroenterol, 2012, 18(47): 6894-6899.
|
3. |
Ong GB, Lee TC. Pharyngogastric anastomosis after oesophago-pharyngectomy for carcinoma of the hypopharynx and cervical oesophagus. Br J Surg, 1960, 48: 193-200.
|
4. |
Okumura Y, Mori K, Yamagata Y, et al. A two-stage operation for thoracic esophageal cancer: esophagectomy and subsequent reconstruction by a free jejunal flap. Surg Today, 2014, 44(2): 395-398.
|
5. |
Tan B, Wang M, Chen X, et al. Tissue engineered esophagus by copper—small intestinal submucosa graft for esophageal repair in a canine model. Sci China Life Sci, 2014, 57(2): 248-255.
|
6. |
Nieponice A, Ciotola FF, Nachman F, et al. Patch esophagoplasty: esophageal reconstruction using biologic scaffolds. Ann Thorac Surg, 2014, 97(1): 283-288.
|
7. |
Vrana NE, Lavalle P, Dokmeci MR, et al. Engineering functional epithelium for regenerative medicine and in vitro organ models: a review. Tissue Eng Part B Rev, 2013, 19(6): 529-543.
|
8. |
Chian KS, Leong MF, Kono K, et al. Regenerative medicine for oesophageal reconstruction after cancer treatment. Lancet, 2015, 16(2): e84-92.
|
9. |
Berman EF. The experimental replacement of portions of the esophagus by a plastic tube. Ann Surg, 1952, 135(3): 337-343.
|
10. |
Watanabe K, Mark JB. Segmental replacement of the thoracic esophagus with a silastic prosthesis. Am J Surg, 1971, 21(3): 238-240.
|
11. |
Lynen Jansen P, Klinge U, Anurov M, et al. Surgical mesh as a scaffold for tissue regeneration in the esophagus. Eur Surg Res, 2004, 36(2): 104-111.
|
12. |
Takimoto Y, Nakamura T, Teramachi M, et al. Replacement of long segments of the esophagus with a collagen-silicone composite tube. ASAIO J, 1995, 41(3): M605-608.
|
13. |
Chung EJ, Ju HW, Park HJ, et al. Three-layered scaffolds for artificial esophagus using poly (ε-caprolactone) nanofibers and silk fibroin: An experimental study in a rat model. J Biomed Mater Res A, 2015, 103(6): 2057-2065.
|
14. |
Oshikiri T, Yamamoto Y, Miki I, et al. Conservative reconstruction using stents as salvage therapy for disruption of esophago-gastric anastomosis. World J Gastroenterol, 2015, 21(28): 8723-8729.
|
15. |
Badylak SF, Hoppo T, Nieponice A, et al. Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold. Tissue Eng Part A, 2011, 17(11-12): 1643-1650.
|
16. |
Badylak S, Meurling S, Chen M, et al. Resorbable bioscaffold for esophageal repair in a dog model. Pediatr Surg, 2000, 35: 1097-1103.
|
17. |
Tan B, Wei RQ, Xie HQ, et al. Tissue engineered esophagus by mesenchymal stem cell seeding for esophageal repair in a canine model. J Surg Res, 2013, 182(1): 40-48.
|
18. |
Fan MR, Gong M, Da LC, et al. Tissue engineered esophagus scaffold constructed with porcine small intestinal submucosa and synthetic polymers. Biomed Mater, 2014, 9(1): 015012.
|
19. |
Chiu PW. Novel endoscopic therapeutics for early gastric cancer. Clin Gastroenterol Hepatol, 2014, 12(1): 120-125.
|
20. |
Isomoto H, Shikuwa S, Yamaguchi N, et al. Endoscopic submucosal dissection for early gastric cancer: a large-scale feasibility study. Gut, 2009, 58(3): 331-336.
|
21. |
Nieponice A, Ciotola FF, Nachman F, et al. Patch esophagoplasty: esophageal reconstruction using biologic scaffolds. Ann Thorac Surg, 2014, 97(1): 283-288.
|
22. |
Jönsson L, Gatzinsky V, Jennische E, et al. Piglet model for studying esophageal regrowth after resection and interposition of a silicone stented small intestinal submucosa tube. Eur Surg Res, 2011, 46(4): 169-179.
|
23. |
Desai KM, Diaz S, Dorward IG, et al. Histologic results 1 year after bioprosthetic repair of paraesophageal hernia in a canine model. Surg Endosc, 2006, 20(11): 1693-1697.
|
24. |
Sjöqvist S, Jungebluth P, Lim ML, et al. Experimental orthotopic transplantation of a tissue-engineered oesophagus in rats. Nat Commun, 2014, 5: 3562.
|
25. |
Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix: using nature's platform to engineer bioartificial heart. Nat Med, 2008, 14(2): 213-221.
|
26. |
Ott HC, Clippinger B, Conrad C, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med, 2010, 16(8): 927-933.
|
27. |
Song JJ, Guyette JP, Gilpin SE, et al. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med, 2013, 19(5): 646-651.
|
28. |
Tapias LF, Ott HC. Decellularized scaffolds as a platform for bioengineered organs. Curr Opin Organ Transplant, 2014, 19(2): 145-152.
|
29. |
Gilpin SE, Guyette JP, Gonzalez G. Perfusion decellularization of human and porcine lungs: Bringing the matrix to clinical scale. J Heart Lung Transplant, 2014, 33(3): 298-308.
|
30. |
侯楠, 崔鹏程, 罗家胜, 等.去细胞支架的制备及喉肌再生可行性研究.中华耳鼻咽喉头颈外科杂志, 2009, 44(7): 586-590.
|
31. |
Hou N, Cui P, Luo J, et al. Tissue-engineered larynx using perfusion-decellularized technique and mesenchymal stem cells in a rabbit model. Acta Otolaryngol, 2011, 131(6): 645-652.
|
32. |
Sato M, Ando N, Ozawa S, et al. An artificial esophagus consisting of cultured human esophageal epithelial cells, polyglycolic acid mesh, and collagen. ASAIO J, 1994, 40(3): M389-392.
|
33. |
Jensen T, Blanchette A, Vadasz S, et al. Biomimetic and synthetic esophageal tissue engineering. Biomaterials, 2015, 57: 133-141.
|
34. |
Ohki T, Yamato M, Ota M, et al. Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology, 2012, 143(3): 582-588.
|
35. |
Poghosyan T, Gaujoux S, Vanneaux V, et al. In vitro development and characterization of a tissue-engineered conduit resembling esophageal wall using human and pig skeletal myoblast, oral epithelial cells, and biologic scaffolds. Tissue Eng Part A, 2013, 19(19-20): 2242-2252.
|
36. |
Poghosyan T, Sfeir R, Michaud L, et al. Circumferential esophageal replacement using a tube-shaped tissue-engineered substitute: An experimental study in minipigs. Surgery, 2015, 158(1): 266-277.
|
37. |
Saxena AK. Esophagus tissue engineering: designing and crafting the components for the "hybrid construct" approach. Eur J Pediatr Surg, 2014, 24(3): 246-262.
|
38. |
Ding DC, Chang YH, Shyu WC, et al. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant, 2015, 24(3): 339-347.
|
39. |
Harris DT. Umbilical cord tissue mesenchymal stem cells: characterization and clinical applications. Curr Stem Cell Res Ther, 2013, 8(5): 394-399.
|
40. |
Coskun H, Can A. The assessment of the in vivo to in vitro cellular transition of human umbilical cord multipotentstromal cells. Placenta, 2015, 6(2): 232-239.
|
41. |
谭波, 解慧琪.组织工程在食管修复重建外科中的应用.生物物理学报, 2011, 27(6): 475-482.
|