1. |
Sorbara CD, Wagmer NE, Ladwig A, et al. Pervasive axonal transport deficits in multiple sclerosis models. Neuron, 2014, 84(6): 1183-1190.
|
2. |
Grutzendler J, Gan WB. Two-photon imaging of synaptic plasticity and pathology in the living mouse brain. NeuroRx, 2006, 3(4): 489-496.
|
3. |
Brennan FH, Cowin GJ, Kurniawan ND, et al. Longitudinal assessment of white matter pathology in the injured mouse spinal cord through ultra-high field (16.4 T) in vivo diffusion tensor imaging. Neuroimage, 2013, 82: 574-585.
|
4. |
Smith AK, Dortch RD, Dethrage LM, et al. Rapid, high-resolution quantitative magnetization transfer MRI of the human spinal cord. Neuroimage, 2014, 95: 106-116.
|
5. |
Haynes SE, Hollopeter G, Yang G, et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci, 2006, 9(12): 1512-1519.
|
6. |
Chen X, Leischner U, Rochefort NL, et al. Functional mapping of single spines in cortical neurons in vivo. Nature, 2011, 475(7357): 501-505.
|
7. |
Parkhurst CN, Yang G, Ninan I, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell, 2013, 155(7): 1596-1609.
|
8. |
Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science, 1990, 248(4951): 73-76.
|
9. |
Zhang P, Jiang XF, Nie X, et al. A two-photon fluorescent sensor revealing drug-induced liver injury via tracking gamma-glutamyltranspeptidase (GGT) level in vivo. Biomaterials, 2016, 80: 46-56.
|
10. |
Cooper SR, Emond MR, Duy PQ, et al. Protocadherins control the modular assembly of neuronal columns in the zebrafish optic tectum. J Cell Biol, 2015, 211(4): 807-814.
|
11. |
Sinha S, Liang L, Ho ET, et al. High-speed laser microsurgery of alert fruit flies for fluorescence imaging of neural activity. Proc Natl Acad Sci U S A, 2013, 110(46): 18374-18379.
|
12. |
Greenberg ML, Weinger JG, Matheu MP, et al. Two-photon imaging of remyelination of spinal cord axons by engrafted neural precursor cells in a viral model of multiple sclerosis. Proc Natl Acad Sci U S A, 2014, 111(22): E2349-2355.
|
13. |
Rosenegger DG, Tran CH, Wamsteeker Cusulin JI, et al. Tonic local brain blood flow control by astrocytes independent of phasic neurovascular coupling. J Neurosci, 2015, 35(39): 13463-13474.
|
14. |
Grutzendler J, Kasthuri N, Gan WB. Long-term dendritic spine stability in the adult cortex. Nature, 2002, 420(6917): 812-816.
|
15. |
Yang G, Pan F, Parkhurst CN, et al. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc, 2010, 5(2): 201-208.
|
16. |
Kerschensteiner M, Schwab ME, Lichtman JW, et al. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med, 2005, 11(5): 572-577.
|
17. |
Misgeld T, Nikic I, Kerschensteiner M. In vivo imaging of single axons in the mouse spinal cord. Nat Protoc, 2007, 2(2): 263-268.
|
18. |
Davalos D, Lee JK, Smith WB, et al. Stable in vivo imaging of densely populated glia, axons and blood vessels in the mouse spinal cord using two-photon microscopy. J Neurosci Methods, 2008, 169(1): 1-7.
|
19. |
Davalos D, Akassoglou K. In vivo imaging of the mouse spinal cord using two-photon microscopy. J Vis Exp, 2012, 5(59): e2760.
|
20. |
Farrar MJ, Bernstein IM, Schlafer DH, et al. Chronic in vivo imaging in the mouse spinal cord using an implanted chamber. Nat Methods, 2012, 9(3): 297-302.
|
21. |
Fenrich KK, Weber P, Hocine M, et al. Long-term in vivo imaging of normal and pathological mouse spinal cord with subcellular resolution using implanted glass windows. J Physiol, 2012, 590(16): 3665-3675.
|
22. |
Figley SA, Chen Y, Maeda A, et al. A spinal cord window chamber model for in vivo longitudinal multimodal optical and acoustic imaging in a murine model. PLoS One, 2013, 8(3): e58081.
|
23. |
Geoffroy CG, Lorenzana AO, Kwan JP, et al. Effects of PTEN and Nogo codeletion on corticospinal axon sprouting and regeneration in mice. J Neurosci, 2015, 35(16): 6413-6428.
|
24. |
Du K, Zheng S, Zhang Q, et al. Pten deletion promotes regrowth of corticospinal tract axons 1 year after spinal cord injury. J Neurosci, 2015, 35(26): 9754-9763.
|
25. |
Zukor K, Belin S, Wang C, et al. Short hairpin RNA against PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury. J Neurosci, 2013, 33(39): 15350-15361.
|
26. |
Feng G, Mellor RH, Bernstein M, et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron, 2000, 28(1): 41-51.
|
27. |
Di Maio A, Skuba A, Himes BT, et al. In vivo imaging of dorsal root regeneration: rapid immobilization and presynaptic differentiation at the CNS/PNS border. J Nurosci, 2011, 31(12): 4569-4582.
|
28. |
Skuba A, Manire MA, Kim H, et al. Time-lapse in vivo imaging of dorsal root nerve regeneration in mice. Methods Mol Biol, 2014, 1162: 219-232.
|
29. |
Zhang Y, Zhang L, Shen J, et al. Two-photon excited fluorescence microscopy as a tool to investigate the efficacy of methylprednisolone in a mouse spinal cord injury model. Spine (Phila Pa 1976), 2014, 39(8): E493-499.
|
30. |
Zhang Y, Zhang L, Ji X, et al. Two-photon microscopy as a tool to investigate the therapeutic time window of methylprednisolone in a mouse spinal cord injury model. Restor Neurol Neurosci, 2015, 33(3): 291-300.
|
31. |
Ellwardt E, Zipp F. Molecular mechanisms linking neuroinflammation and neurodegeneration in MS. Exp Neurol, 2014, 262 Pt A: 8-17.
|
32. |
Micu I, Ridsdale A, Zhang L, et al. Real-time measurement of free Ca2+ changes in CNS myelin by two-photon microscopy. Nat Med, 2007, 13(7): 874-879.
|
33. |
Condie AG, Gerson SL, Miller RH, et al. Two-photon fluorescent imaging of myelination in the spinal cord. Chem Med Chem, 2012, 7(12): 2194-2203.
|
34. |
Wang X, Cao K, Sun X, et al. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris. Glia, 2015, 63(4): 635-651.
|
35. |
Stirling DP, Cummins K, Mishra M, et al. Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury. Brain, 2014, 137(Pt 3): 707-723.
|
36. |
Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci, 2005, 8(6): 752-758.
|
37. |
Dibaj P, Nadrigny F, Steffens H, et al. NO mediates microglial response to acute spinal cord injury under ATP control in vivo. Glia, 2010, 58(9): 1133-1144.
|
38. |
Li T, Pang S, Yu Y, et al. Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. Brain, 2013, 136(Pt 12): 3578-3588.
|
39. |
Evans TA, Barkauskas DS, Myers JT, et al. Intravital imaging of axonal interactions with microglia and macrophages in a mouse dorsal column crush injury. J Vis Exp, 2014, (93): e52228.
|
40. |
Evans TA, Barkauskas DS, Myers JT, et al. High-resolution intravital imaging reveals that blood-derived macrophages but not resident microglia facilitate secondary axonal dieback in traumatic spinal cord injury. Exp Neurol, 2014, 254: 109-120.
|
41. |
Díaz-Ríos M, Dombeck DA, Webb WW, et al. Serotonin modulates dendritic calcium influx in commissural interneurons in the mouse spinal locomotor network. J Neurophysiol, 2007, 98(4): 2157-2167.
|
42. |
Li X, Yu K, Zhang Z, et al. Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex. Cell Res, 2014, 24(3): 307-330.
|
43. |
Chen Q, Cichon J, Wang W, et al. Imaging neural activity using Thy1-GCaMP transgenic mice. Neuron, 2012, 76(2): 297-308.
|
44. |
Yang G, Lai CS, Cichon J, et al. Sleep promotes branch-specific formation of dendritic spines after learning. Science, 2014, 344(6188): 1173-1178.
|
45. |
Cichon J, Gan WB. Branch-specific dendritic Ca(2+) spikes cause persistent synaptic plasticity. Nature, 2015, 520(7546): 180-185.
|
46. |
Yang G, Pan F, Chang PC, et al. Transcranial two-photon imaging of synaptic structures in the cortex of awake head-restrained mice. Methods Mol Biol, 2013, 1010: 35-43.
|
47. |
Johannssen HC, Helmchen F. In vivo Ca2+ imaging of dorsal horn neuronal populations in mouse spinal cord. J Physiol, 2010, 588(Pt 18): 3397-3402.
|
48. |
Johannssen HC, Helmchen F. Two-photon imaging of spinal cord cellular networks. Exp Neurol, 2013, 242: 18-26.
|
49. |
Nishida K, Matsumura S, Taniguchi W, et al. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging. PLoS One, 2014, 9(8): e103321.
|
50. |
Chen TW, Wardill TJ, Sun Y, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 2013, 499(7458): 295-300.
|