1. |
Marin E, Fedrizzi L, Zagra L. Porous metallic structures for orthopaedic applications: a short review of materials and technologies. Eur Orthop Traumatol, 2010, 1(1): 103-109.
|
2. |
Helm AT, Kerin C, Ghalayini SR, et al. Preliminary results of an uncemented trabecular metal tibial component in total knee arthroplasty. J Arthroplast, 2009, 24(6): 941-944.
|
3. |
Cardaropoli F, Alfieri V, Caiazzo F, et al. Manufacturing of porous biomaterials for dental implant applications through selective laser melting. Adv Mater Res, 2012, 6(535-537): 1222-1229.
|
4. |
Bobyn JD, Stackpool GJ, Hacking SA, et al. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomatcrial. J Bone Joint Surg (Br), 1999, 81(5): 907-914.
|
5. |
Papanna MC, Al-Hadithy N, Somanchi BV, et al. The use of bone morphogenic protein-7 (OP-1) in the management of resistant non-unions in the upper and lower limb. Injury, 2012, 43(7): 1135-1140.
|
6. |
Zamurovic N, Cappellen D, Rohner D, et al. Coordinated activation of notch, Wnt, and transforming growth factor-beta signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J Biol Chem, 2004, 279(36): 37704-37715.
|
7. |
Chubinskaya S, Kawakami M, Rappoport L, et al. Anti-catabolic effect of OP-1 in chronically compressed intervertebral discs. J Orthop Res, 2007, 25(4): 517-530.
|
8. |
Papanna MC, Al-Hadithy N, Somanchi BV, et al. The use of bone morphogenic protein-7 (OP-1) in the management of resistant non-unions in the upper and lower limb. Injury, 2012, 43(7): 1135-1140.
|
9. |
Imai Y, Miyamoto K, An HS, et al. Recombinant human osteogenic protein-1 upregulates proteoglycan metabolism of human anulus fibrosus and nucleus pulposus cells. Spine (Phila Pa 1976), 2007, 32(12): 1303-1310.
|
10. |
Mason JM, Grande DA, Barcia M, et al. Expression of human bone morphogenic protein 7 in primary rabbit periosteal cells: potential utility in gene therapy for osteochondral repair. Gene Ther, 1998, 5(8): 1098-1104.
|
11. |
张辉, 李亮, 王茜, 等.骨形成蛋白-7对多孔钽/软骨细胞复合物分泌功能以及Col-Ⅱ、AGG和Sox9基因表达的影响.北京大学学报(医学版), 2015, 47(2): 219-225.
|
12. |
Moran ME, Kim HK, Salter RB. Biological resurfacing of full-thickness defects in patellar articular cartilage of the rabbit. Investigation of autogenous periosteal grafts subjected to continuous passive motion. J Bone Joint Surg (Br), 1992, 74(5): 659-667.
|
13. |
Niederauer GG, Slivka MA, Leatherbury NC, et al. Evaluation of multiphase implants for repair of focal osteochondral defects in goats. Biomaterials, 2000, 21(24): 2561-2574.
|
14. |
武垚森, 池永龙.小梁金属(多孔钽)在骨科的应用现状.中华骨科杂志, 2007, 27(12): 939-941.
|
15. |
甘洪全, 刘鑫, 赵济华, 等.国产多孔钽材料兔竖脊肌植入组织学及生物学效应.南京医科大学学报(自然科学版), 2014, 34(5): 611-616.
|
16. |
Sinclair SK, Konz GJ, Dawson JM, et al. Host bone response to polyetheretherketone versus porous tantalum implants for cervical spinal fusion in a goat model. Spine (Phila Pa 1976), 2012, 37(10): E571-580.
|
17. |
Sidhu KS, Prochnow TD, Schmitt P, et al. Anterior cervical interbody fusion with rhBMP-2 and tantalum in a goat model. Spine J, 2001, 1(5): 331-340.
|
18. |
Shapiro F, Kiode S, Glimcher MJ. Cell origin and differentiation in the repair of fullthickness defect of articular cartilage. J Bone Joint Surg (Am), 1993, 75(4): 532-553.
|
19. |
Brittberg M, Nilsson A, Lindahl A, et al. Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop Relat Res, 1996, (326): 270-283.
|
20. |
Lavery K, Hawley S, Swain Y, et al. New insights into BMP-7 mediated osteoblastic differentiation of primary human mesenchymal stem cells. Bone, 2009, 45(1): 27-41.
|
21. |
Bobyn JD, Toh KK, Hacking SA, et al. Tissue response to porous tantalum acetabular cups:a canine model. J Arthroplasty, 1999, 14(3): 347-354.
|
22. |
Duan X, Zhu X, Dong X, et al. Repair of large osteochondral defects in a beagle model with a novel type I collagen/glycosaminoglycan-porous titanium biphasic scaffold. Mater Sci Eng C Mater Biol Appl, 2013, 33(7): 3951-3957.
|