1. |
Montanaro L, Testoni F, Poggi A, et al. Emerging pathogenetic mechanisms of the implant-related osteomyelitis by Staphylococcus aureus. Int J Artif Organs, 2011, 34(9):781-788.
|
2. |
Liu ZQ, Deng GM, Foster S, et al. Staphylococcal peptidoglycans induce arthritis. Arthritis Res, 2001, 3(6):375-380.
|
3. |
Park OJ, Yang J, Kim J, et al. Enterococcus faecalis attenuates the differentiation of macrophages into osteoclasts. J Endod, 2015, 41(5): 658-662.
|
4. |
黄金亮, 唐辉, 徐永清.骨髓炎流行病学.国际骨科学杂志, 2011, 32(2):94-95.
|
5. |
Tuchscherr L, Kreis CA, Hoerr V, et al. Staphylococcus aureus develops increased resistance to antibiotics by forming dynamic small colony variants during chronic osteomyelitis. J Antimicrob Chemother, 2016, 71(2):438-448.
|
6. |
Kalinka J, Hachmeister M, Geraci J, et al. Staphylococcus aureus isolates from chronic osteomyelitis are characterized by high host cell invasion and intracellular adaptation, but still induce inflammation. Int J Med Microbiol, 2014, 304(8):1038-1049.
|
7. |
Wang H, He XQ, Jin T, et al. Wnt11 plays an important role in the osteogenesis of human mesenchymal stem cells in a PHA/FN/ALG composite scaffold:possible treatment for infected bone defect. Stem Cell Res Ther, 2016, 7:18.
|
8. |
Jin T, Zhu YL, Li J, et al. Staphylococcal protein A, Panton-Valentine leukocidin and coagulase aggravate the bone loss and bone destruction in osteomyelitis. Cell Physiol Biochem, 2013, 32(2):322-333.
|
9. |
Josse J, Velard F, Gangloff SC. Staphylococcus aureus vs. osteoblast: relationship and consequences in osteomyelitis. Front Cell Infect Microbiol, 2015, 5:85.
|
10. |
Zecconi A, Scali F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol Lett, 2013, 150(1-2):12-22.
|
11. |
Kishimoto T, Kaneko T, Ukai T, et al. Peptidoglycan and lipopolysaccharide synergistically enhance bone resorption and osteoclastogenesis. J Periodontal Res, 2012, 47(4):446-454.
|
12. |
Kim J, Yang J, Park OJ, et al. Lipoproteins are an important bacterial component responsible for bone destruction through the induction of osteoclast differentiation and activation. J Bone Miner Res, 2013, 28(11):2381-2391.
|
13. |
Takami M, Kim N, Rho J, et al. Stimulation by toll-like receptors inhibits osteoclast differentiation. J Immunol, 2002, 169(3):1516-1523.
|
14. |
Kobayashi K, Takahashi N, Jimi E, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med, 2000, 191(2):275-286.
|
15. |
Zhou C, Liu W, He W, et al. Saikosaponin a inhibits RANKLinduced osteoclastogenesis by suppressing NF-κB and MAPK pathways. Int Immunopharmacol, 2015, 25(1):49-54.
|
16. |
Yao W, Li K, Liao K. Macropinocytosis contributes to the macrophage foam cell formation in RAW264.7 cells. Acta Biochim Biophys Sin (Shanghai), 2009, 41(9):773-780.
|
17. |
Hsu H, Lacey DL, Dunstan CR, et al. Tumor necrosis factor receptor family member rank mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A, 1999, 96(7):3540-3545.
|
18. |
Adamopoulos IE, Mellins ED. Alternative pathways of osteoclastogenesis in inflammatory arthritis. Nat Rev Rheumatol, 2015, 11(3):189-194.
|
19. |
Trouillet-Assant S, Gallet M, Nauroy P, et al. Dual impact of live Staphylococcus aureus on the osteoclast lineage, leading to increased bone resorption. J Infect Dis, 2015, 211(4):571-581.
|
20. |
Lau YS, Wang W, Sabokbar A, et al. Staphylococcus aureus capsular material promotes osteoclast formation. Injury, 2006, 37 Suppl 2: S41-48.
|