1. |
Arai K, Iwanaga S, Toda H, et al. Three-dimensional inkjet biofabrication based on designed images. Biofabrication, 2011, 3(3):034113.
|
2. |
Sachs E, Cima M, Cornie J. Three-dimensional printing:rapid tooling and prototypes directly from a CAD model. CIRP Annals-Manufacturing Technology, 1990, 39(1):201-204.
|
3. |
王富友, 任翔, 杨柳. 3-D打印技术在关节外科的应用.中国修复重建外科杂志, 2014, 28(3):272-275.
|
4. |
罗强, 刘德荣, 方欣硕, 等. 3-D打印技术在矫形外科的应用.中国修复重建外科杂志, 2014, 28(3):268-271.
|
5. |
程文俊, 勘武生, 郑琼, 等. 3D打印钛合金骨小梁金属臼杯全髋关节置换术的短期疗效.中华骨科杂志, 2014, 34(8):816-823.
|
6. |
王臻, 滕勇, 李涤尘, 等.基于快速成型的个体化人工半膝关节的研制-计算机辅助设计与制造.中国修复重建外科杂志, 2004, 18(5):347-351.
|
7. |
Sun W, Li J, Li Q, et al. Clinical effectiveness of hemipelvic reconstruction using computer-aided custom-made prostheses after resection of malignant pelvic tumors. J Arthroplasty, 2011, 26(8):1508-1513.
|
8. |
Xu N, Wei F, Liu X, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma. Spine (Phila Pa 1976), 2016, 41(1):E50-E54.
|
9. |
Marcantonio, Graziano. Development of framework for the manufacture of customized titanium cervical cage implants using additive manufacturing. Stellenbosch:Stellenbosch University, 2014.
|
10. |
Agarwala M, Bourell D, Beaman J, et al. Direct selective laser sintering of metals. Rapid Prototyping Journal, 1995, 1(1):26-36.
|
11. |
Kruth JP, Wang X, Laoui T, et al. Lasers and materials in selective laser sintering. Assembly Automation, 2003, 23(4):357-371.
|
12. |
史玉升, 闫春泽, 魏青松, 等.选择性激光烧结3D打印用高分子复合材料.中国科学(信息科学), 2015, 45(2):204-211.
|
13. |
Du Y, Liu H, Shuang J, et al. Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility. Colloids Surf B Biointerfaces, 2015, 135:81-89.
|
14. |
Mazzoli A, Ferretti C, Gigante A, et al. Selective laser sintering manufacturing of polycaprolactone bone scaffolds for applications in bone tissue engineering. Rapid Prototyping Journal, 2015, 21(4):386-392.
|
15. |
Bremen S, Meiners W, Diatlov A. Selective laser melting. Laser Technik Journal, 2012, 9(2):33-38.
|
16. |
Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Materialia, 2010, 58(9):3303-3312.
|
17. |
李瑞迪, 魏青松, 刘锦辉, 等.选择性激光熔化成形关键基础问题的研究进展.航空制造技术, 2012, (5):26-31.
|
18. |
de Wild M, Schumacher R, Mayer K, et al. Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting:a histological and micro computed tomography study in the rabbit. Tissue Eng Part A, 2013, 19(23-24):2645-2654.
|
19. |
王燎, 戴尅戎.骨科个体化治疗与3D打印技术.医用生物力学, 2014, 29(3):193-199.
|
20. |
Hiemenz J. Electron beam melting. Advanced Materials & Processes, 2007, 165(3):45-46.
|
21. |
Palmquist A, Snis A, Emanuelsson L, et al. Long-term biocompatibility and osseointegration of electron beam melted, free-form-fabricated solid and porous titanium alloy:experimental studies in sheep. J Biomater Appl, 2013, 27(8):1003-1016.
|
22. |
Abe F, Santos EC, Kitamura Y, et al. Influence of forming conditions on the titanium model in rapid prototyping with the selective laser melting process. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2003, 217(1):119-126.
|
23. |
Pattanayak DK, Fukuda A, Matsushita T, et al. Bioactive Ti metal analogous to human cancellous bone:Fabrication by selective laser melting and chemical treatments. Acta Biomater, 2010, 7(3):1398-1406.
|
24. |
Olivares-Navarrete R, Gittens RA, Schneider JM, et al. Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone. Spine J, 2012, 12(3):265-272.
|
25. |
Chlebus E, Kuźnicka B, Kurzynowski T, et al. Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting. Materials Characterization, 2011, 62(5):488-495.
|
26. |
Zhang LC, Klemm D, Eckert J, et al. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy. Scripta Materialia, 2011, 65(1):21-24.
|
27. |
Pietak A, Mahoney P, Dias GJ, et al. Bone-like matrix formation on magnesium and magnesium alloys. J Mater Sci Mater Med, 2008, 19(1):407-415.
|
28. |
Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials:a review. Biomaterials, 2006, 27(9):1728-1734.
|
29. |
Xu L, Zhang E, Yin D, et al. In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application. J Mater Sci Mater Med, 2008, 19(3):1017-1025.
|
30. |
Ng CC, Savalani MM, Lau ML, et al. Microstructure and mechanical properties of selective laser melted magnesium. Applied Surface Science, 2011, 257(17):7447-7454.
|
31. |
Chi CN, Savalani M, Man HC. Fabrication of magnesium using selective laser melting technique. Rapid Prototyping Journal, 2011, 17(6):479-490.
|
32. |
Lai Y, Li L, Chen S, et al. A novel magnesium composed PLGA/TCP porous scaffold fabricated by 3D printing for bone regeneration. Journal of Orthopaedic Translation, 2014, 2(4):218-219.
|
33. |
Daentzer D, Willb E, Kalla K, et al. Bioabsorbable interbody magnesium-polymer cage:degradation kinetics, biomechanical stiffness, and histological findings from an ovine cervical spine fusion model. Spine (Phila Pa 1976), 2014, 39(20):E1220-1227.
|
34. |
Shabalovskaya S, Anderegg J, Van Humbeeck J. Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomater, 2008, 4(3):447-467.
|
35. |
Yablokova G, Speirs M, Van Humbeeck J, et al. Rheological behavior of β-Ti and NiTi powders produced by atomization for SLM production of open porous orthopedic implants. Powder Technology, 2015, 283:199-209.
|
36. |
Pope JC, Sue HJ, Bremner T, Blümel J. High-temperature steam-treatment of PBI, PEEK, and PEKK polymers with H2O and D2O:A solid-state NMR study. Polymer, 2014, 55(18):4577-4585.
|
37. |
Tan KH, Chua CK, Leong KF, et al. Fabrication and characterization of three-dimensional poly(ether-ether-ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering. Proc Inst Mech Eng H, 2005, 219(3):183-194.
|
38. |
Converse GL, Conrad TL, Merrill CH, et al. Hydroxyapatite whisker-reinforced polyetherketoneketone bone ingrowth scaffolds. Acta Biomater, 2010, 6(3):856-863.
|
39. |
Alvarez K, Nakajima H. Metallic scaffolds for bone regeneration. Materials, 2009, 2(3):790-832.
|
40. |
钟世镇.临床应用解剖学.北京:人民军医出版社, 1998:284-291.
|
41. |
Sudarmadji N, Tan JY, Leong KF, et al. Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater, 2011, 7(2):530-537.
|
42. |
吴天琦, 杨春喜.可用于骨修复的3-D打印多孔支架研究进展.中国修复重建外科杂志, 2016, 30(4):509-513.
|
43. |
Takemoto M, Fujibayashi S, Neo M, et al. Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials, 2005, 26(30):6014-6023.
|
44. |
Pattanayak D, Matsushita T, Takadama H, et al. Fabrication of bioactive porous Ti metal with structure similar to human cancellous bone by selective laser melting. Bioceramics Development and Applications, 2011, 1:1-3.
|
45. |
Wu SH, Li Y, Zhang YQ, et al. Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion. Artificial Organs, 2013, 37(12):E191-E201.
|
46. |
Le Guehennec L, Lopez-Heredia MA, Enkel B, et al. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater, 2008, 4(3):535-543.
|
47. |
Svehla M, Morberg P, Zicat B, et al. Morphometric and mechanical evaluation of titanium implant integration:comparison of five surface structures. J Biomed Mater Res, 2000, 51(1):15-22.
|
48. |
Yang J, Cai H, Lv J, et al. Biomechanical and histological evaluation of roughened surface titanium screws fabricated by electron beam melting. PLoS One, 2014, 9(4):e96179.
|
49. |
汪铁铮.北大人民医院完成世界首例3D打印全骶骨假体治疗骶骨恶性肿瘤术.首都食品与医药, 2015, (19):64.
|
50. |
Hunt J. Truss implant:US, US20100161061 A1[P].2009-12-17[2010-06-24].
|
51. |
Kiapour A, Goel V, Ferrara L, Jessee H. SUBSIDENCE EVALUATION OF 4-WEB, A NOVEL CROSS STRUT BASED, INTERBODY CAGE DESIGN:GP64. Spine Journal Meeting Abstracts. Gothenburg, Sweden:Lippincott Williams & Wilkins, 2011.
|
52. |
Barbas A, Bonnet AS, Lipinski P, et al. Development and mechanical characterization of porous titanium bone substitutes. J Mech Behav Biomed Mater, 2012, 9:34-44.
|
53. |
Jasty M, Bragdon C, Burke D, et al. In vivo skeletal responses to porous-surfaced implants subjected to small induced motions. J Bone Joint Surg (Am), 1997, 79(5):707-714.
|
54. |
Li X, Feng YF, Wang CT, et al. Evaluation of biological properties of electron beam melted Ti6Al4V implant with biomimetic coating in vitro and in vivo. PLoS One, 2012, 7(12):e52049.
|
55. |
Biemond JE, Aquarius R, Verdonschot N, et al. Frictional and bone ingrowth properties of engineered surface topographies produced by electron beam technology. Arch Orthop Trauma Surg, 2011, 131(5):711-718.
|
56. |
Kang HW, Lee SJ, Ko IK, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol, 2016.[Epub ahead of print].
|
57. |
Zhong XK, Teoh JEM, Liu Y, et al. 3D printing of smart materials:A review on recent progresses in 4D printing. Virtual and Physical Prototyping, 2015, 10(3):103-122.
|