1. |
Tsuboguchi S, Matsui N, Taneda Y, et al. Arthroscopic findings of cartilage changes in knees with rheumatoid arthritis. Ryumachi, 1989, 29(2):110-117.
|
2. |
Frisbie DD, Cross MW, McIlwraith CW. A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee. Vet Comp Orthop Traumatol, 2006, 19(3):142-146.
|
3. |
Pritzker KP, Gay S, Jimenez SA, et al. Osteoarthritis cartilage histopathology:grading and staging. Osteoarthritis and Cartilage, 2006, 14(1):13-29.
|
4. |
Gore M, Tai KS, Sadosky A, et al. Clinical comorbidities, treatment patterns, and direct medical costs of patients with osteoarthritis in usual care:a retrospective claims database analysis. J Med Econ, 2011, 14(4):497-507.
|
5. |
Kuyinu EL, Narayanan G, Nair LS, et al. Animal models of osteoarthritis:classification, update, and measurement of outcomes. J Orthop Surg Res, 2016, 11:19.
|
6. |
宁志刚, 杨柳, 王富友, 等. 保留钙化层结构的猪股骨滑车全厚软骨缺损模型建立. 中国修复重建外科杂志, 2012, 26(5):527-531.
|
7. |
王斌. 骨性关节炎的动物模型研究进展. 中医临床研究, 2013, 5(10):120-122.
|
8. |
翟吉良, 翁习生, 邱贵兴. 骨关节炎动物模型的建立及选择. 中国矫形外科杂志, 2007, 15(11):843-845.
|
9. |
马玉峰, 祁印泽, 王庆甫, 等. 关节内注射药物建立骨性关节炎动物模型研究进展. 中国骨伤, 2015, 28(1):90-95.
|
10. |
Lampropoulou-Adamidou K, Lelovas P, Karadimas EV, et al. Useful animal models for the research of osteoarthritis. Eur J Orthop Surg Traumatol, 2014, 24(3):263-271.
|
11. |
Libicher M, Ivancic M, Hoffmann M, et al. Early changes in experimental osteoarthritis using the Pond-Nuki dog model:technical procedure and initial results of in vivo MR imaging. Eur Radiol, 2005, 15(2):390-394.
|
12. |
Boileau C, Martel-Pelletier J, Abram F, et al. Magnetic resonance imaging can accurately assess the long-term progression of knee structural changes in experimental dog osteoarthritis. Ann Rheum Dis, 2008, 67(7):926-932.
|
13. |
Shortkroff S, Barone L, Hsu HP, et al. Healing of chondral and osteochondral defects in a canine model:the role of cultured chondrocytes in regeneration of articular cartilage. Biomaterials, 1996, 17(2):147-154.
|
14. |
Breinan HA, Minas T, Hsu HP, et al. Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Joint Surg (Am), 1997, 79(10):1439-1451.
|
15. |
项舟, 胡炜, 孔清泉, 等. 骨髓间充质干细胞种植Ⅰ型胶原支架材料修复关节软骨缺损的初步研究. 中国修复重建外科杂志, 2006, 20(2):148-154.
|
16. |
D'Anjou MA, Moreau M, Troncy E, et al. Osteophytosis, subchondral bone sclerosis, joint effusion and soft tissue thickening in canine experimental stifle osteoarthritis:comparison between 1.5 T magnetic resonance imaging and computed radiography. Vet Surg, 2008, 37(2):166-177.
|
17. |
Joseph GB, Hou SW, Nardo L, et al. MRI findings associated with development of incident knee pain over 48 months:data from the osteoarthritis initiative. Skeletal Radiol, 2016, 45(5):653-660.
|
18. |
Podlipska J, Guermazi A, Lehenkari P, et al. Comparison of diagnostic performance of semi-quantitative knee ultrasound and knee radiography with MRI:oulu knee osteoarthritis study. Sci Rep, 2016, 6:22365.
|
19. |
Roemer FW, Hunter DJ, Crema MD, et al. An illlustrative overview of semi-quantitative MRI scoring of knee osteoarthritis:lessons learned from longitudinal observational studies. Osteoarthritis Cartilage, 2016, 24(2):274-289.
|
20. |
Teeple E, Jay GD, Elsaid KA, et al. Animal models of osteoarthritis:challenges of model selection and analysis. AAPS J, 2013, 15(2):438-446.
|