1. |
Spahn G, Schiltenwolf M, Hartmann B, et al. The time-related risk for knee osteoarthritis after ACL injury. Results from a systematic review. Orthopade, 2016, 45(1):81-90.
|
2. |
Papathanasiou I, Michalitsis S, Hantes ME, et al. Molecular changes indicative of cartilage degeneration and osteoarthritis development in patients with anterior cruciate ligament injury. BMC Musculoskelet Disord, 2016, 17:21.
|
3. |
Murray MM, Fleming BC. Use of a bioactive scaffold to stimulateanterior cruciate ligament healing also minimizes posttraumaticosteoarthritis after surgery. Am J Sports Med, 2013, 41(8):1762-1770.
|
4. |
翟溶凡, 王晓旭, 杨俊涛. 前交叉韧带重建中EndoButton和RigidFix两种股骨侧固定方式比较的系统评价. 中国矫形外科杂志, 2014, 22(24):2209-2214.
|
5. |
Negahi Shirazi A, Chrzanowski W, Khademhosseini A, et al. Anterior cruciate ligament:structure, injuries and regenerative treatments. Adv Exp Med Biol, 2015, 881:161-186.
|
6. |
Bi F, Shi Z, Jiang S, et al. Intermittently administered parathyroid hormone 1-34 promotes tendon-bone healing in a rat model. Int J Mol Sci, 2014, 15(10):17366-17379.
|
7. |
Bissell L, Tibrewal S, Sahni V, et al. Growth factors and platelet rich plasma in anterior cruciate ligament reconstruction. Curr Stem Cell Res Ther, 2014, 10(1):19-25.
|
8. |
Kondo E, Yasuda K, Yamanaka M, et al. Effects of administration of exogenous growth factors on biomechanical properties of the elongation-type anterior cruciate ligament injury with partial laceration. Am J Sports Med, 2005, 33(2):188-196.
|
9. |
王晓旭, 翟溶凡, 杨俊涛, 等. 腺病毒介导TGF-β1基因转染腘绳肌腱对兔前交叉韧带重建术后腱-骨愈合的组织形态学影响. 中国修复重建外科杂志, 2015, 29(12):1488-1493.
|
10. |
Hansen M, Boesen A, Holm L, et al. Local administration of insulin-like growth factor-I (IGF-I) stimulates tendon collagen synthesis in humans. Scand J Med Sci Sports, 2013, 23(5):614-619.
|
11. |
Anderson K, Seneviratne AM, Izawa K, et al. Augmentation of tendon healing in an intraarticular bone tunnel with use of a bone growth factor. Am J Sports Med, 2001, 29(6):689-698.
|
12. |
Wang Y, Tang Z, Xue R, et al. TGF-beta1 promoted MMP-2 mediated wound healing of anterior cruciate ligament fibroblasts through NF-kappaB. Connect Tissue Res, 2011, 52(3):218-225.
|
13. |
Cheng MT, Yang HW, Chen TH, et al. Modulation of proliferation and differentiation of human anterior cruciate ligament-derived stem cells by different growth factors. Tissue Eng Part A, 2009, 15(12):3979-3989.
|
14. |
Yamazaki S, Yasuda K, Tomita F, et al. The effect of transforming growth factor-beta1 on intraosseous healing of flexor tendon autograft replacement of anterior cruciate ligament in dogs. Arthroscopy, 2005, 21(9):1034-1041.
|
15. |
Qin J, Hou ZQ, Wang H, et al. Effects of geneactivated matrix on autograft healing of anterior cruciate ligament. Mol Med Rep, 2013, 7(2):679-683.
|
16. |
Moss JA. Gene therapy review. Radiol Technol, 2014, 86(2):155-184.
|
17. |
Gao X, Du J, Fan G, et al. Adenoviral-mediated GDNF protects bonemarrow mesenchymal stem cells against apoptosis induced byhydrogen peroxide. Biomed Mater Eng, 2014, 24(6):2169-2176.
|
18. |
Wei XL, Lin L, Hou Y, et al. Construction of recombinant adenovirus co-expression vector carrying the human transforming growth factor-beta1 and vascular endothelial growth factor genes and its effect on anterior cruciate ligament fibroblasts. Chin Med J (Engl), 2008, 121(15):1426-1432.
|
19. |
Martinek V, Latterman C, Usas A, et al. Enhancement of tendon-bone integration of anterior cruciate ligament grafts with bone morphogenetic protein-2 gene transfer:a histological and biomechanical study. J Bone Joint Surg (Am), 2002, 84-A(7):1123-1131.
|
20. |
Gerich TG, Kang R, Fu FH, et al. Gene transfer to the patellar tendon. Knee Surg Sports Traumatol Arthrosc, 1997, 5(2):118-123.
|