1. |
Montanaro L, Testoni F, Poggi A, et al. Emerging pathogenetic mechanisms of the implant-related osteomyelitis by Staphylococcus aureus. Int J Artif Organs, 2011, 34(9):781-788.
|
2. |
黄金亮, 唐辉, 徐永清. 骨髓炎流行病学. 国际骨科学杂志, 2011, 32(2):94-95.
|
3. |
Fiedler T, Salamon A, Adam S, et al. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Exp Cell Res, 2013, 319(18):2883-2892.
|
4. |
Jin T, Zhu YL, Li J, et al. Staphylococcal protein A, Panton-Valentine leukocidin and coagulase aggravate the bone loss and bone destruction in osteomyelitis. Cell Physiol Biochem, 2013, 32(2):322-333.
|
5. |
Josse J, Velard F, Gangloff SC. Staphylococcus aureus vs. osteoblast:relationship and consequences in osteomyelitis. Front Cell Infect Microbiol, 2015, 5:85.
|
6. |
Trouillet-Assant S, Gallet M, Nauroy P, et al. Dual impact of live Staphylococcus aureus on the osteoclast lineage, leading to increased bone resorption. J Infect Dis, 2014, 211(4):571-581.
|
7. |
任莉荣, 徐永清, 王海, 等. 金黄色葡萄球菌肽聚糖对破骨细胞分化的影响研究. 中国修复重建外科杂志, 2016, 30(8):1006-1010.
|
8. |
Tevlin R, McArdle A, Chan CK, et al. Osteoclast derivation from mouse bone marrow. J Vis Exp, 2014, (93):e52056.
|
9. |
Martin TJ, Ng KW. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. J Cell Biochem, 1994, 56(3):357-366.
|
10. |
Dougall WC, Glaccum M, Charrier K, et al. RANK is essential for osteoclast and lymph node development. Genes Dev, 1999, 13(18):2412-2424.
|
11. |
Honma M, Ikebuchi Y, Kariya Y, et al. Regulatory mechanisms of RANKL presentation to osteoclast precursors. Curr Osteoporos Rep, 2014, 12(1):115-120.
|
12. |
Soysa NS, Alles N, Aoki K, et al. Osteoclast formation and differentiation:an overview. J Med Dent Sci, 2012, 59(3):65-74.
|
13. |
任莉荣, 徐永清. 破骨细胞分化机制的研究进展. 中国骨质疏松杂志, 2015, 21(12):1522-1525, 1528.
|
14. |
Zhao Q, Wang X, Liu Y, et al. NFATc1:functions in osteoclasts. Int J Biochem Cell Biol, 2010, 42(5):576-579.
|
15. |
Jimi E, Fukushima H. NF-kappaB signaling pathways and the future perspectives of bone disease therapy using selective inhibitors of NF-kappaB. Clin Calcium, 2016, 26(2):298-304.
|
16. |
Schwandner R, Dziarski R, Wesche H, et al. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem, 1999, 274(25):17406-17409.
|
17. |
Varoga D, Wruck CJ, Tohidnezhad M, et al. Osteoblasts participate in the innate immunity of the bone by producing human beta defensin-3. Histochem Cell Biol, 2009, 131(2):207-218.
|
18. |
Algate K, Haynes DR, Bartold PM, et al. The effects of tumour necrosis factor-alpha on bone cells involved in periodontal alveolar bone loss; osteoclasts, osteoblasts and osteocytes. J Periodontal Res, 2016, 51(5):549-566.
|
19. |
Boyce BF. Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res, 2013, 92(10):860-867.
|
20. |
Kudo O, Sabokbar A, Pocock A, et al. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone, 2003, 32(1):1-7.
|
21. |
DiDonato JA, Mercurio F, Karin M. NF-kappaB and the link between inflammation and cancer. Immunol Rev, 2012, 246(1):379-400.
|