1. |
Kadow T, Sowa G, Vo N, et al. Molecular basis of intervertebral disc degeneration and herniations:what are the important translational questions? Clin Orthop Relat Res, 2014, 473(6):1903-1912.
|
2. |
Phillips FM, An H, Kang JD, et al. Biologic treatment for intervertebral disc degeneration:summary statement. Spine (Phila Pa 1976), 2003, 28(15 Suppl):S99.
|
3. |
Maniadakis N, Gray A. The economic burden of back pain in the UK. Pain, 2000, 84(1):95-103.
|
4. |
Loenarz C, Coleman ML, Boleininger A, et al. The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep, 2011, 12(1):63-70.
|
5. |
Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol, 1992, 12(12):5447-5454.
|
6. |
Zhao J, Zhang P, Qin L, et al. Hypoxia is essential for bone-tendon junction healing:the molecular biological evidence. Int Orthop, 2011, 35(6):925-928.
|
7. |
Fraisl P, Aragonés J, Carmeliet P. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov, 2009, 8(2):139-152.
|
8. |
Lin WP, Wang XJ, Wang CR, et al. Polymorphism in the hypoxia-inducible factor 1alpha gene may confer susceptibility to LDD in Chinese cohort. PLoS One, 2013, 8(8):e73158.
|
9. |
Jiang BH, Semenza GL, Bauer C, et al. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol, 1996, 271(4 Pt 1):C1172-1180.
|
10. |
Huang LE, Gu J, Schau M, et al. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A, 1998, 95(14):7987-7992.
|
11. |
Epstein AC, Gleadle JM, McNeill LA, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 2001, 107(1):43-54.
|
12. |
Kallio PJ, Wilson WJ, O'Brien S, et al. Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem, 1999, 274(10):6519-6525.
|
13. |
Masson N, Ratcliffe PJ. HIF prolyl and asparaginyl hydroxylases in the biological response to intracellular O(2) levels. J Cell Sci, 2003, 116(Pt 15):3041-3049.
|
14. |
Berra E, Benizri E, Ginouvès A, et al. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J, 2003, 22(16):4082-4090.
|
15. |
Lando D, Peet DJ, Whelan DA, et al. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science, 2002, 295(5556):858-861.
|
16. |
Dunwoodie SL. The role of hypoxia in development of the Mammalian embryo. Dev Cell, 2009, 17(6):755-773.
|
17. |
Iyer NV, Kotch LE, Agani F, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev, 1998, 12(2):149-162.
|
18. |
Yoon D, Ponka P, Prchal JT. Hypoxia.5.Hypoxia and hematopoiesis. Am J Physiol Cell Physiol, 2011, 300(6):C1215-1222.
|
19. |
Schipani E, Ryan HE, Didrickson S, et al. Hypoxia in cartilage:HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev, 2001, 15(21):2865-2876.
|
20. |
Yun Z, Maecker HL, Johnson RS, et al. Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13:a mechanism for regulation of adipogenesis by hypoxia. Dev Cell, 2002, 2(3):331-341.
|
21. |
Kojima H, Gu H, Nomura S, et al. Abnormal B lymphocyte development and autoimmunity in hypoxia-inducible factor 1alpha-deficient chimeric mice. Proc Natl Acad Sci U S A, 2002, 99(4):2170-2174.
|
22. |
Dang EV, Barbi J, Yang HY, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell, 2011, 146(5):772-784.
|
23. |
Wang Y, Wan C, Deng L, et al. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest, 2007, 117(6):1616-1626.
|
24. |
Takubo K, Goda N, Yamada W, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell, 2010, 7(3):391-402.
|
25. |
Zinkernagel AS, Johnson RS, Nizet V. Hypoxia inducible factor (HIF) function in innate immunity and infection. J Mol Med (Berl), 2007, 85(12):1339-1346.
|
26. |
Gustafsson MV, Zheng X, Pereira T, et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell, 2005, 9(5):617-628.
|
27. |
Shimoda LA, Manalo DJ, Sham JS, et al. Partial HIF-1alpha deficiency impairs pulmonary arterial myocyte electrophysiological responses to hypoxia. Am J Physiol Lung Cell Mol Physiol, 2001, 281(1):L202-208.
|
28. |
Yu AY, Shimoda LA, Iyer NV, et al. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. J Clin Invest, 1999, 103(5):691-696.
|
29. |
Kline DD, Peng YJ, Manalo DJ, et al. Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 alpha. Proc Natl Acad Sci U S A, 2002, 99(2):821-826.
|
30. |
Genbacev O, Zhou Y, Ludlow JW, et al. Regulation of human placental development by oxygen tension. Science, 1997, 277(5332):1669-1672.
|
31. |
Scheid A, Wenger RH, Schäffer L, et al. Physiologically low oxygen concentrations in fetal skin regulate hypoxia-inducible factor 1 and transforming growth factor-beta3. FASEB J, 2002, 16(3):411-413.
|
32. |
Katz MM, Hargens AR, Garfin SR. Intervertebral disc nutrition. Diffusion versus convection. Clin Orthop Relat Res, 1986, (210):243-245.
|
33. |
Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science, 2001, 294(5545):1337-1340.
|
34. |
Loinard C, Ginouves A, Vilar J, et al. Inhibition of prolyl hydroxylase domain proteins promotes therapeutic revascularization. Circulation, 2009, 120(1):50-59.
|
35. |
Hlatky MA, Quertermous T, Boothroyd DB, et al. Polymorphisms in hypoxia inducible factor 1 and the initial clinical presentation of coronary disease. Am Heart J, 2007, 154(6):1035-1042.
|
36. |
Resar JR, Roguin A, Voner J, et al. Hypoxia-inducible factor 1alpha polymorphism and coronary collaterals in patients with ischemic heart disease. Chest, 2005, 128(2):787-791.
|
37. |
Bosch-Marce M, Okuyama H, Wesley JB, et al. Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circ Res, 2007, 101(12):1310-1318.
|
38. |
Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell, 2012, 148(3):399-408.
|
39. |
Merceron C, Mangiavini L, Robling A, et al. Loss of HIF-1α in the notochord results in cell death and complete disappearance of the nucleus pulposus. PLoS One, 2014, 9(10):e110768.
|
40. |
Agrawal A, Guttapalli A, Narayan S, et al. Normoxic stabilization of HIF-1alpha drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk. Am J Physiol Cell Physiol, 2007, 293(2):C621-631.
|
41. |
Ha KY, Koh IJ, Kirpalani PA, et al. The expression of hypoxia inducible factor-1alpha and apoptosis in herniated discs. Spine (Phila Pa 1976), 2006, 31(12):1309-1313.
|
42. |
Agrawal A, Gajghate S, Smith H, et al. Cited2 modulates hypoxia-inducible factor-dependent expression of vascular endothelial growth factor in nucleus pulposus cells of the rat intervertebral disc. Arthritis Rheum, 2008, 58(12):3798-3808.
|
43. |
Rajpurohit R, Risbud MV, Ducheyne P, et al. Phenotypic characteristics of the nucleus pulposus:expression of hypoxia inducing factor-1, glucose transporter-1 and MMP-2. Cell Tissue Res, 2002, 308(3):401-407.
|
44. |
Risbud MV, Guttapalli A, Stokes DG, et al. Nucleus pulposus cells express HIF-1 alpha under normoxic culture conditions:a metabolic adaptation to the intervertebral disc microenvironment. J Cell Biochem, 2006, 98(1):152-159.
|
45. |
Richardson SM, Knowles R, Tyler J, et al. Expression of glucose transporters GLUT-1, GLUT-3, GLUT-9 and HIF-1alpha in normal and degenerate human intervertebral disc. Histochem Cell Biol, 2008, 129(4):503-511.
|
46. |
Fujita N, Imai J, Suzuki T, et al. Vascular endothelial growth factor-A is a survival factor for nucleus pulposus cells in the intervertebral disc. Biochem Biophys Res Commun, 2008, 372(2):367-372.
|
47. |
Bibby SR, Urban JP. Effect of nutrient deprivation on the viability of intervertebral disc cells. Eur Spine J, 2004, 13(8):695-701.
|
48. |
Horner HA, Urban JP. 2001 Volvo Award Winner in Basic Science Studies:Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine (Phila Pa 1976), 2001, 26(23):2543-2549.
|
49. |
Park JB, Chang H, Kim KW. Expression of Fas ligand and apoptosis of disc cells in herniated lumbar disc tissue. Spine (Phila Pa 1976), 2001, 26(6):618-621.
|
50. |
Zeng Y, Danielson KG, Albert TJ, et al. HIF-1 alpha is a regulator of galectin-3 expression in the intervertebral disc. J Bone Miner Res, 2007, 22(12):1851-1861.
|
51. |
Peng B, Hao J, Hou S, et al. Possible pathogenesis of painful intervertebral disc degeneration. Spine (Phila Pa 1976), 2006, 31(5):560-566.
|
52. |
Risbud MV, Fertala J, Vresilovic EJ, et al. Nucleus pulposus cells upregulate PI3K/Akt and MEK/ERK signaling pathways under hypoxic conditions and resist apoptosis induced by serum withdrawal. Spine (Phila Pa 1976), 2005, 30(8):882-889.
|
53. |
Risbud MV, Guttapalli A, Albert TJ, et al. Hypoxia activates MAPK activity in rat nucleus pulposus cells:regulation of integrin expression and cell survival. Spine (Phila Pa 1976), 2005, 30(22):2503-2509.
|
54. |
Mazure NM, Pouysségur J. Hypoxia-induced autophagy:cell death or cell survival? Curr Opin Cell Biol, 2010, 22(2):177-180.
|
55. |
Russell RC, Yuan HX, Guan KL. Autophagy regulation by nutrient signaling. Cell Res, 2014, 24(1):42-57.
|
56. |
Galluzzi L, Pietrocola F, Levine B, et al. Metabolic control of autophagy. Cell, 2014, 159(6):1263-1276.
|
57. |
Hu YL, DeLay M, Jahangiri A, et al. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res, 2012, 72(7):1773-1783.
|
58. |
Srinivas V, Bohensky J, Zahm AM, et al. Autophagy in mineralizing tissues:microenvironmental perspectives. Cell Cycle, 2009, 8(3):391-393.
|
59. |
Wu HM, Jiang ZF, Ding PS, et al. Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells. Sci Rep, 2015, 5:12291.
|
60. |
Choi H, Merceron C, Mangiavini L, et al. Hypoxia promotes noncanonical autophagy in nucleus pulposus cells independent of MTOR and HIF1A signaling. Autophagy, 2016.[Epub ahead of print].
|
61. |
Wang F, Cai F, Shi R, et al. Hypoxia regulates sumoylation pathways in intervertebral disc cells:implications for hypoxic adaptations. Osteoarthritis Cartilage, 2016, 24(6):1113-1124.
|
62. |
Papandreou I, Cairns RA, Fontana L, et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab, 2006, 3(3):187-197.
|
63. |
Suda T, Takubo K, Semenza GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell, 2011, 9(4):298-310.
|
64. |
Robins JC, Akeno N, Mukherjee A, et al. Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone, 2005, 37(3):313-322.
|
65. |
Tran CM, Fujita N, Huang BL, et al. Hypoxia-inducible factor (HIF)-1alpha and CCN2 form a regulatory circuit in hypoxic nucleus pulposus cells:CCN2 suppresses HIF-1alpha level and transcriptional activity. J Biol Chem, 2013, 288(18):12654-12666.
|
66. |
Li H, Liang CZ, Chen QX. Regulatory role of hypoxia inducible factor in the biological behavior of nucleus pulposus cells. Yonsei Med J, 2013, 54(4):807-812.
|
67. |
Fujita N, Hirose Y, Tran CM, et al. HIF-1-PHD2 axis controls expression of syndecan 4 in nucleus pulposus cells. FASEB J, 2014, 28(6):2455-2465.
|
68. |
Johnson ZJ, Gogate SS, Day R, et al. Aquaporin 1 and 5 expression decreases during human intervertebral disc degeneration Novel HIF-1-mediated regulation of aquaporins in NP cells. Oncotarget, 2015, 6(14):11945-11958.
|