1. |
Yeh DC, Chan TM, Harn HJ, et al. Adipose tissue-derived stem cells in neural regenerative medicine. Cell Transplant, 2015, 24(3):487-492.
|
2. |
Rasmussen JG, Frøbert O, Holst-Hansen C, et al. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model. Cell Transplant, 2014, 23(2):195-206.
|
3. |
Heydarkhan-Hagvall S, Schenke-Layland K, Yang JQ, et al. Human adipose stem cells:a potential cell source for cardiovascular tissue engineering. Cells Tissues Organs, 2008, 4(187):263-274.
|
4. |
Vallières K, Laterreur V, Tondreau MY, et al. Human adipose-derived stromal cells for the production of completely autologous self-assembled tissue-engineered vascular substitutes. Acta Biomater, 2015, 24:209-219.
|
5. |
Sugii S, Kida Y, Berggren WT, et al. Feeder-dependent and feeder-independent iPS cell derivation from human and mouse adipose stem cells. Nat Protoc, 2011, 6(3):346-358.
|
6. |
李志园, 杨刚, 黄华, 等.双相脉冲电刺激可促进脂肪干细胞分化为心肌细胞样细胞.细胞与分子免疫学杂志, 2015, 31(9):1200-1204.
|
7. |
Lin L, Marchant RE, Zhu J, et al. Extracellular matrix-mimetic poly (ethylene glycol) hydrogels engineered to regulate smooth muscle cell proliferation in 3-D. Acta Biomater, 2014, 10(12):5106-5115.
|
8. |
Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science, 2012, 336(6085):1124-1128.
|
9. |
Ghezzi C, Marelli B, Donelli I, et al. The role of physiological mechanical cues on mesenchymal stem cell differentiation in an airway tract-like dense collagen-silk fibroin construct. Biomaterials, 2014, 35(24):6236-6247.
|
10. |
Skopinska-Wisniewska J, Olszewski K, Bajek A, et al. Dialysis as a method of obtaining neutral collagen gels. Mater Sci Eng C Mater Biol Appl, 2014, 40:65-70.
|
11. |
Chuang CH, Lin RZ, Tien HW, et al. Enzymatic regulation of functional vascular networks using gelatin hydrogels. Acta Biomaterialia, 2015, 19:85-99.
|
12. |
Sell SA, McClure MJ, Garg K, et al. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv Drug Deliv Rev, 2009, 61(12):1007-1019.
|
13. |
员海超, 蒲春晓, 魏强, 等.组织工程细胞外基质材料研究进展.中国修复重建外科杂志, 2012, 26(10):1251-1254.
|
14. |
王觅格, 夏亚一, 王栓科, 等.骨髓间充质干细胞复合消旋聚乳酸/明胶修复兔关节软骨缺损的实验研究.中国修复重建外科杂志, 2007, 21(7):753-758.
|
15. |
Marelli B, Achilli M, Alessandrino A, et al. Collagen-reinforced electrospun silk fibroin tubular construct as small calibre vascular graft. Macromol Biosci, 2012, 12(11):1566-1574.
|
16. |
Lin CC. Recent advances in crosslinking chemistry of biomimetic poly (ethylene glycol) hydrogels. RSC Adv, 2015, 5(50):39844-39853.
|
17. |
Ito A, Mase A, Takizawa Y, et al. Transglutaminase-mediated gelatin matrices incorporating cell adhesion factors as a biomaterial for tissue engineering, J Biosci Bioeng, 2003, 95(2):196-199.
|
18. |
Chen RN, Ho HO, Sheu MT. Characterization of collagen matrices crosslinked using microbial transglutaminase. Biomaterials, 2005, 26(20):4229-4235.
|
19. |
丁克毅.转谷氨酰胺酶改性明胶高强度薄膜的制备.食品与生物技术学报, 2007, 26(1):25-28.
|
20. |
Mizuno A, Mitsuiki M, Motoki M. Effect of transglutaminase treatment on the glass transition of soy protein. J Agric Food Chem, 2000, 48(8):3286-3291.
|
21. |
Kieliszek M, Misiewicz A. Microbial transglutaminase and its application in the food industry. A review. Folia Microbiol (Praha), 2014, 59(3):241-250.
|
22. |
徐幸莲, 陈巧芬, 周光宏.转谷氨酰胺酶对蛋白质凝胶性能的影响.食品科学, 2003, 24(10):38-43.
|
23. |
Hiroyasu A, Masae A, Koichi U, et al. Purification and characteristics of a novel transglutaminase derived from microorganisms. Agriculture and Biological Chemistry, 1989, 53(10):2613-2617.
|