1. |
Yeganeh A, Taghavi R, Moghtadaei M. Comparing the Intramedullary Nailing Method Versus Dynamic Hip Screw in Treatment of Unstable Intertrochanteric Fractures. Med Arch, 2016, 70(1): 53-56.
|
2. |
Torres AL, Gaspar VM, Serra IR, et al. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration. Mater Sci Eng C Mater Biol Appl, 2013, 33(7): 4460-4469.
|
3. |
Seol YJ, Park DY, Park JY, et al. A new method of fabricating robust freeform 3D ceramic scaffolds for bone tissue regeneration. Biotechnol Bioeng, 2013, 110(5): 1444-1455.
|
4. |
Giffin JM, Pankaj P, Simpson AH. A computational study on the effect of fracture intrusion distance in three- and four-part trochanteric fractures treated with Gamma nail and sliding hip screw. J Orthop Res, 2014, 32(1): 39-45.
|
5. |
Zhang R. Prediction of proximal femoral fracture in sideways falls using nonlinear dynamic finite element analysis. Journal of Mechanics in Medicine and Biology, 2014, 14(2): 407-415.
|
6. |
Lee PY, Lin KJ, Wei HW, et al. Biomechanical effect of different femoral neck blade position on the fixation of intertrochanteric fracture: a finite element analysis. Biomed Tech (Berl), 2016, 61(3): 331-336.
|
7. |
谭成方. 不同温度烧结羟基磷灰石陶瓷的微观力学性能和生物活性研究. 成都: 四川大学, 2014.
|
8. |
Taylor ME, Tanner KE, Freeman MA, et al. Stress and strain distrbution within the intact femur: compress or bending? Med Eng Phys, 1996, 18(2): 122-131.
|
9. |
Azagra R, López-Expósito F, Martin-Sánchez JC, et al. Incidence of hip fracture in Spain (1997-2010). Med Clin (Barc), 2015, 145(11): 465-470.
|
10. |
Leal J, Gray AM, Prieto-Alhambra D, et al. Impact of hip fracture on hospital care costs: a population-based study. Osteoporos Int, 2016, 27(2): 549-558.
|
11. |
Page PR, Lord R, Jawad A, et al. Changing trends in the management of intertrochanteric hip fractures-A single centre experience. Injury, 2016, 47(7): 1525-1529.
|
12. |
Saletti-Cuesta L, Tutton L, Wright J. The relevance of gender in the care of hip fracture patients. Int J Orthop Trauma Nurs, 2016, 22: 3-12.
|
13. |
Stronach BM, Duke JN, Rozensweig SD, et al. Subtrochanteric femur fracture after core decompression and placement of a tantalum strut for osteonecrosis of the femoral head. J Arthroplasty, 2010, 25(7): 1168.e5-e7.
|
14. |
Wang J, Ma JX, Jia HB. Biomechanical Evaluation of Four Methods for Internal Fixation of Comminuted Subtrochanteric Fractures. Medicine (Baltimore), 2016, 95(19): e3382.
|
15. |
Descampsa M, Boilet L, Moreaua G, et al. Processing and properties of biphasic calcium phosphates bioceramics obtained by pressureless sintering and hot isostatic pressing. Journal of the European Ceramic Society, 2013, 33(7): 1263-1270.
|
16. |
Dorozhkin SV. Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceramics International, 2016, 42(6): 6529-6554.
|
17. |
Nagineni VV, James AR, Alimi M, et al. Silicate-substituted calcium phosphate ceramic bone graft replacement for spinal fusion procedures. Spine (Phila Pa 1976), 2012, 37(20): 1264-1272.
|
18. |
Dorozhkin SV. Calcium orthophosphate bioceramics. Ceram Int, 2015, 41: 13913-13966.
|
19. |
Gryshkov O, Klyui NI, Temchenko VP, et al. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants. Mater Sci Eng C Mater Biol Appl, 2016, 68: 143-152.
|
20. |
Dorozhkin SV. Calcium orthophosphate deposits: preparation, properties and biomedical applications. Mater Sci Eng C Mater Biol Appl, 2015, 55: 272-326.
|
21. |
姚金凤, 李晓宇, 张筱薇, 等. 大孔孔径对磷酸钙陶瓷骨诱导性的影响. 口腔医学研究, 2011, 27(4): 288-291.
|
22. |
Rho JY, Tsui TY, Pharr GM. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials, 1997, 18(20): 1325-1330.
|