1. |
Sims NA, Vrahnas C. Regulation of cortical and trabecular bone mass by communication between osteoblasts, osteocytes and osteoclasts. Arch Biochem Biophys, 2014, 561: 22-28.
|
2. |
Montanaro L, Testoni F, Poggi A, et al. Emerging pathogenetic mechanisms of the implant-related osteomyelitis by Staphylococcus aureus. Int J Artif Organs, 2011, 34(9): 781-788.
|
3. |
Nair SP, Meghji S, Wilson M, et al. Bacterially induced bone destruction: mechanisms and misconceptions. Infect Immun, 1996, 64(7): 2371-2380.
|
4. |
Zecconi A, Scali F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol Lett, 2013, 150(1-2): 12-22.
|
5. |
Wicken AJ, Knox KW. Lipoteichoic acids: a new class of bacterial antigen. Science, 1975, 187(4182): 1161-1167.
|
6. |
Kishimoto T, Kaneko T, Ukai T, et al. Peptidoglycan and lipopolysaccharide synergistically enhance bone resorption and osteoclastogenesis. J Periodontal Res, 2012, 47(4): 446-454.
|
7. |
Zhou C, Liu WG, He W, et al. Saikosaponin a inhibits RANKL-induced osteoclastogenesis by suppressing NF-κB and MAPK pathways. Int Immunopharmacol, 2015, 25(1): 49-54.
|
8. |
Jin T, Zhu YL, Li J, et al. Staphylococcal protein A, Panton-Valentine leukocidin and coagulase aggravate the bone loss and bone destruction in osteomyelitis. Cell Physiol Biochem, 2013, 32(2): 322-333.
|
9. |
Rasigade JP, Trouillet-Assant S, Ferry T, et al. PSMs of hypervirulent Staphylococcus aureus act as intracellular toxins that kill infected osteoblasts. PLoS One, 2013, 8(5): e63176-e63188.
|
10. |
Josse J, Velard F, Gangloff SC. Staphylococcus aureus vs. Osteoblast: Relationship and consequences in osteomyelitis. Fron Cell Infect Microbiol, 2015, 5: 85.
|
11. |
Nair S, Song Y, Meghji S, et al. Surface-associated proteins from Staphylococcus aureus demonstrate potent bone resorbing activity. J Bone Miner Res, 1995, 10(5): 726-734.
|
12. |
Lau YS, Wang W, Sabokbar A, et al. Staphylococcus aureus capsular material promotes osteoclast formation. Injury, 2006, 37 Suppl 2: S41-S48.
|
13. |
Meghji S, Crean SJ, Hill PA, et al. Surface-associated protein from Staphylococcus aureus stimulates osteoclastogenesis: possible role in S.aureus-induced bone pathology. Br J Rheumatol, 1998, 37(10): 1095-1101.
|
14. |
Ryu YH, Baik JE, Yang JS, et al. Differential immunostimulatory effects of Gram-positive bacteria due to their lipoteichoic acids. Int Immunopharmacol, 2009, 9(1): 127-133.
|
15. |
Chambers TJ, Revell PA, Fuller K, et al. Resorption of bone by isolated rabbit osteoclasts. J Cell Sci, 1984, 66: 383-399.
|
16. |
Yang J, Ryu YH, Yun CH, et al. Impaired osteoclastogenesis by staphylococcal lipoteichoic acid through Toll-like receptor 2 with partial involvement of MyD88. J Leukoc Biol, 2009, 86(4): 823-831.
|
17. |
Yang J, Park OJ, Kim J, et al. Lipoteichoic acid of enterococcus faecalis inhibits the differentiation of macrophages into osteoclasts. J Endod, 2016, 42(4): 570-574.
|
18. |
Kobayashi K, Takahashi N, Jimi E, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism Independent of the ODF/RANKL-RANK interaction. J Exp Med, 2000, 191(2): 275-286.
|
19. |
Yao W, Li K, Liao K. Macropinocytosis contributes to the macrophage foam cell formation in RAW264.7 cells. Acta Biochim Biophys Sin (Shanghai), 2009, 41(9): 773-780.
|
20. |
Soysa NS, Alles N, Aoki K, et al. Osteoclast formation and differentiation: an overview. J Med Dent Sci, 2012, 59(3): 65-74.
|
21. |
Collin-Osdoby P, Yu X, Zheng H, et al. RANKL-mediated osteoclast formation from murine RAW 264.7 cells. Methods Mol Med, 2003, 80: 153-166.
|
22. |
任莉荣,徐永清,王海,等. 金黄色葡萄球菌肽聚糖对破骨细胞分化的影响研究.中国修复重建外科杂志, 2016, 30(8): 1006-1010.
|
23. |
Mendoza Bertelli A, Delpino MV, Lattar S, et al. Staphylococcus aureus protein A enhances osteoclastogenesis via TNFR1 and EGFR signaling. Biochim Biophys Acta, 2016, 1862(10): 1975-1983.
|
24. |
任莉荣, 王海, 何晓清,等. 金葡菌脂磷壁酸促进破骨细胞分化的分子机制. 实用医学杂志, 2016, 32(20): 3369-3372.
|