1. |
Chin KR, Pencle FJ, Seale JA, et al. Clinical outcomes of outpatient cervical total disc replacement compared to outpatient anterior cervical discectomy and fusion. Spine (Phila Pa 1976), 2016. [Epub ahead of print].
|
2. |
Hisey MS, Zigler JE, Jackson R, et al. Prospective, randomized comparison of one-level Mobi-C cervical total disc replacement vs. anterior cervical discectomy and fusion: results at 5-year follow-up. Int J Spine Surg, 2016, 10: 10.
|
3. |
Mcanany SJ, Overley S, Baird EO, et al. The 5-year cost-effectiveness of anterior cervical discectomy and fusion and cervical disc replacement: a Markov analysis. Spine (Phila Pa 1976), 2014, 39(23): 1924-1933.
|
4. |
Gornet MF, Burkus JK, Shaffrey ME, et al. Cervical disc arthroplasty with PRESTIGE LP disc versus anterior cervical discectomy and fusion: a prospective, multicenter investigational device exemption study. J Neurosurg Spine, 2015, 23(5): 1-16.
|
5. |
Wazen RM, Lefebvre LP, Baril E, et al. Initial evaluation of bone ingrowth into a novel porous titanium coating. J Biomed Mater Res B Appl Biomater, 2010, 94(1): 64-71.
|
6. |
Shao MM, Chen CH, Lin ZK, et al. Comparison of the more than 5-year clinical outcomes of cervical disc arthroplasty versus anterior cervical discectomy and fusion: A protocol for a systematic review and meta-analysis of prospective randomized controlled trials. Medicine (Baltimore), 2016, 95(51): e5733.
|
7. |
Sugiura T, Yamamoto K, Horita S, et al. The effects of bone density and crestal cortical bone thickness on micromotion and peri-implant bone strain distribution in an immediately loaded implant: a nonlinear finite element analysis. J Periodontal Implant Sci, 2016, 46(3): 152-165.
|
8. |
Lin CY, Kang H, Rouleau JP, et al. Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: anin vivo image-based finite element study. Spine (Phila Pa 1976), 2009, 34(15): 1554-1560.
|
9. |
Galbusera F, Fantigrossi A, Raimondi MT, et al. Biomechanics of the C5-C6 spinal unit before and after placement of a disc prosthesis. Biomech Model Mechanobiol, 2006, 5(4): 253-261.
|
10. |
Devries NA. The biomechanics of the sheep cervical spine: An experimental and finite element analysis. Iowa city: University of Iowa, 2011.
|
11. |
Qin YX, Rubin CT, McLeod KJ. Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology. J Orthop Res, 1998, 16(4): 482-489.
|
12. |
Sun H, Li Q, Zhang Y, et al. Regulation of OPG and RANKL expressed by human dental follicle cells in osteoclastogenesis. Cell Tissue Res, 2015, 362(2): 399-405.
|
13. |
Kolf CM, Lin S, Helm J, et al. Nascent osteoblast matrix inhibits osteogenesis of human mesenchymal stem cellsin vitro. Stem Cell Res Ther, 2015, 6: 258.
|
14. |
Kameo Y, Adachi T. Modeling trabecular bone adaptation to local bending load regulated by mechanosensing osteocytes. Acta Mechanica, 2014, 225(10): 2833-2840.
|
15. |
Mayeur O, Haugou G, Chaari F. Anisotropy and strain rate effects on bovine cortical bone: combination of high-resolution imaging and dynamic loading. Comput Methods Biomech Biomed Engin, 2013, 16 Suppl 1: 206-208.
|
16. |
Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg (Am), 1984, 66(3): 397-402.
|
17. |
Lanyon LE, Hampson WG, Goodship AE, et al. Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthop Scand, 1975, 46(2): 256-268.
|
18. |
Galea GL, Price JS. Four-point bending protocols to study the effects of dynamic strain in osteoblastic cellsin vitro. Methods Mol Biol, 2015, 1226: 117-130.
|
19. |
Suda T, Takahashi N, Udagawa N, et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocrine Reviews, 2013, 20(3): 345-357.
|
20. |
Martin TJ, Ng KW. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. Journal of Cellular Biochemistry, 1994, 56(3): 357-366.
|
21. |
Xu F, Dong Y, Huang X, et al. Pioglitazone affects the OPG/RANKL/RANK system and increase osteoclastogenesis. Mol Med Rep, 2016, 14(3): 2289-2296.
|
22. |
Tyagi AK, Prasad S, Majeed M, et al. Calebin A downregulates osteoclastogenesis through suppression of RANKL signaling. Archives of Biochemistry and Biophysics, 2016, 593(1): 80-89.
|
23. |
Shen Y, Jiang T, Wang R, et al. (5R)-5-Hydroxytriptolide (LLDT-8) inhibits osteoclastogenesis via RANKL/RANK/OPG signaling pathway. BMC Complement Altern Med, 2015, 15: 77.
|
24. |
Song F, Lin Z, Zhao J, et al. Eriodictyol inhibits RANKL-induced osteoclast formation and function via inhibition of NFATc1 activity. J Cell Physiol, 2016, 231(9): 1983-1993.
|
25. |
Ota Y, Niiro H, Ota SI, et al. Generation mechanism of RANKL(+) effector memory B cells: relevance to the pathogenesis of rheumatoid arthritis. Arthritis Res Ther, 2016, 18: 67.
|
26. |
Hensvold AH, Joshua V, Li W, et al. Serum RANKL levels associate with anti-citrullinated protein antibodies in early untreated rheumatoid arthritis and are modulated following methotrexate. Arthritis Res Ther, 2015, 17(1): 239.
|
27. |
Liu WW, Xu ZM, Li ZQ, et al. RANKL, OPG and CTR mRNA expression in the temporomandibular joint in rheumatoid arthritis. Exp Ther Med, 2015, 10(3): 895-900.
|
28. |
Hashizume M, Hayakawa N, Mihara M. IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-α and IL-17. Rheumatology, 2008, 47: 1635-1640.
|
29. |
Matsuda Y, Motokawa M, Kaku M, et al. RANKL and OPG expression: Jiggling force affects root resorption in rats. Angle Orthod, 2017, 87(1): 41-48.
|
30. |
Fazzalari NL, Kuliwaba JS, Atkins GJ, et al. The ratio of messenger RNA levels of receptor activator of nuclear factor κB ligand to osteoprotegerin correlates with bone remodeling indices in normal human cancellous bone but not in osteoarthritis. Journal of Bone and Mineral Research, 2001, 16(6): 1015-1027.
|
31. |
Weivoda MM, Ruan M, Pederson L, et al. Osteoclast TGF-β receptor signaling induces Wnt11 secretion and couples bone resorption to bone formation. J Bone Miner Res, 2016, 31(1): 76-85.
|
32. |
Crane JL, Cao X. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling. J Clin Invest, 2014, 124(2): 466-472.
|
33. |
Omata Y, Nakamura S, Koyama T, et al. Identification of Nedd9 as a TGF-β-Smad2/3 target gene involved in RANKL-induced osteoclastogenesis by comprehensive analysis. PLoS One, 2016, 11(6): e0157992.
|