1. |
Fleischmann W, Strecker W, Bombelli M, et al. Vacuum sealing as treatment of soft tissue damage in open fractures. Unfallchirurg, 1993, 96(9): 488-492.
|
2. |
Saxena V, Hwang CW, Huang S, et al. Vacuum-assisted closure:microdeformations of wounds and cell proliferation. Plast Reconstr Surg, 2004, 114(5): 1086-1096.
|
3. |
黄米娜, 刘堃, 梅晰凡, 等. 负压封闭引流技术在大面积皮肤缺损中的应用及护理. 军医进修学院学报, 2012, 33(8): 867-868.
|
4. |
Bassetto F, Lancerotto L, Salmaso R, et al. Histological evolution of chronic wounds under negative pressure therapy. J Plast Reconstr Aesthet Surg, 2012, 65(1): 91-99.
|
5. |
Cozart RF, Atchison JR, Lett ED, et al. The use of controlled subatmospheric pressure to promote wound healing in preparation for split-thickness skin grafting in a fourth degree burn. Tenn Med, 1999, 92(10): 382-384.
|
6. |
Ando J. Shear stress and vascular formation. Nihon Yakurigaku Zasshi, 1996,107(3): 141-152.
|
7. |
Bosnakovski D, Mizuno M, Kim G, et al. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res, 2005, 319(2): 243-253.
|
8. |
杨楠, 何惠宇, 胡杨, 等. 复合骨髓间充质干细胞同种异体支架骨修复羊髂骨极限缺损. 中国组织工程研究, 2013, 17(16): 2859-2868.
|
9. |
王峰, 付志厚. 骨髓间充质干细胞复合异体骨修复松质骨缺损. 中国组织工程研究, 2013, 17(27): 4966-4973.
|
10. |
Yang Z, Yao JF, Xu P, et al. Functions and mechanisms ofintermittent negative pressure for osteogenesis in human bone marrow mesenchymal stem cells. Mol Med Rep, 2014, 9(4): 1331-1336.
|
11. |
杨治, 朱养均, 程延, 等. 体外负压培养对骨髓间充质干细胞成骨活性的影响. 中国骨伤, 2011, 24(12): 1024-1027.
|
12. |
Zhang YG, Yang Z, Zhang H, et al. Effect of negative pressure on human bone marrow mesenchymal stem cellsin vitro. Connect Tissue Res, 2010, 51(1): 14-21.
|
13. |
Zhu J, Yu A, Qi B, et al. Effects of negative pressure wound therapy on mesenchymal stem cells proliferation and osteogenic differentiation in a fibrin matrix. PLoS One, 2014, 9(9): e107339.
|
14. |
De R, Zemel A, Safran SA. Theoretical concepts and models of cellular mechanosensing. Methods Cell Bio, 2010, 98(2): 143-175.
|
15. |
Gong T, Zhao K, Yang G, et al. The control of Mesenchymal stem cell differentiation using dynamically tunable surface microgrooves. Adv healthc Mater, 2014, 3(10): 1608-1619.
|
16. |
雷晓华, 邓智利, 宁立娜, 等. 机械力及力学信号转导影响干细胞命运的研究进展. 中国科学: 生命科学, 2014, 44(7): 639-648.
|
17. |
Han SJ, Sniadecki NJ. Simulations of the contractile cycle in cell migration using a biochemical mechanical model. Comput Methods Biomech Biomed Engin, 2011, 14(5): 459-468.
|
18. |
高莺, 李继华, 韩立赤, 等. 张应力诱导大鼠骨髓间充质干细胞骨向分化及其差异基因表达分析. 华西口腔医学杂志, 2009, 27(2): 213-216.
|
19. |
Ding H, Chen S, Yin JH, et al. Continuous hypoxia regulates the osteogenic potential of mesenchymal stem cells in a time-dependent manner. Mol Med Rep, 2014, 10(4): 2184-2190.
|
20. |
Prado-Lòpez S, Duffy MM, Baustian C, et al. The influence of hypoxia on the differentiationcapacities and immunosuppressive properties of clonalmouse mesenchymal stromal cell lines. Immunol Cell Biol, 2014, 92(7): 612-623.
|