1. |
Ito Z, Matsuyama Y, Sakai Y, et al. Bone union rate with autologous iliac bone versus local bone graft in posterior lumbar interbody fusion. Spine (Phila Pa 1976), 2010, 35(21): E1101-1105.
|
2. |
Ito Z, Imagama S, Kanemura T, et al. Bone union rate with autologous iliac bone versus local bone graft in posterior lumbar interbody fusion (PLIF): a multicenter study. Eur Spine J, 2013, 22(5): 1158-1163.
|
3. |
Tatara AM, Mikos AG. Tissue Engineering in Orthopaedics. J Bone Joint Surg (Am), 2016, 98(13): 1132-1139.
|
4. |
Chou YF, Dunn JC, Wu BM. In vitro response of MC3T3-E1 pre-osteoblasts within three-dimensional apatite-coated PLGA scaffolds. J Biomed Mater Res B Appl Biomater, 2005, 75(1): 81-90.
|
5. |
Akpancar S, Tatar O, Turgut H, et al. The Current Perspectives of Stem Cell Therapy in Orthopedic Surgery. Arch Trauma Res, 2016, 5(4): e37976.
|
6. |
Witkowska-Zimny M, Walenko K. Stem cells from adipose tissue. Cell Mol Biol Lett, 2011, 16(2): 236-257.
|
7. |
Baer PC, Geiger H. Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int, 2012, 2012: 812693.
|
8. |
Han S, Sun HM, Hwang KC, et al. Adipose-Derived Stromal Vascular Fraction Cells: Update on Clinical Utility and Efficacy. Crit Rev Eukaryot Gene Expr, 2015, 25(2): 145-152.
|
9. |
Saxer F, Scherberich A, Todorov A, et al. Implantation of Stromal Vascular Fraction Progenitors at Bone Fracture Sites: From a Rat Model to a First-in-Man Study. Stem Cells, 2016, 34(12): 2956-2966.
|
10. |
Varma MJ, Breuls RG, Schouten TE, et al. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev, 2007, 16(1): 91-104.
|
11. |
Shields LB, Raque GH, Glassman SD, et al. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine (Phila Pa 1976), 2006, 31(5): 542-547.
|
12. |
Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J, 2011, 11(6): 471-491.
|
13. |
Kaito T. Biologic enhancement of spinal fusion with bone morphogenetic proteins: current position based on clinical evidence and future perspective. J Spine Surg, 2016, 2(4): 357-358.
|
14. |
Wang JC, Kanim LE, Yoo S, et al. Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Bone Joint Surg (Am), 2003, 85-A(5): 905-911.
|
15. |
Hsu WK, Wang JC, Liu NQ, et al. Stem cells from human fat as cellular delivery vehicles in an athymic rat posterolateral spine fusion model. J Bone Joint Surg (Am), 2008, 90(5): 1043-1052.
|
16. |
Wang JC. Gene therapy for spinal fusion. Spine J, 2011, 11(6): 557-559.
|
17. |
Lee M, Li W, Siu RK, et al. Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers. Biomaterials, 2009, 30(30): 6094-6101.
|
18. |
Tessmar JK, Göpferich AM. Matrices and scaffolds for protein delivery in tissue engineering. Adv Drug Deliv Rev, 2007, 59(4-5): 274-291.
|
19. |
Sohier J, Daculsi G, Sourice S, et al. Porous beta tricalcium phosphate scaffolds used as a BMP-2 delivery system for bone tissue engineering. J Biomed Mater Res A, 2010, 92(3): 1105-1114.
|
20. |
Berendsen AD, Olsen BR. Bone development. Bone, 2015, 80: 14-18.
|
21. |
Boden SD, Schimandle JH, Hutton WC. An experimental lumbar intertransverse process spinal fusion model. Radiographic, histologic, and biomechanical healing characteristics. Spine (Phila Pa 1976), 1995, 20(4): 412-420.
|
22. |
Lin L, Shen Q, Wei X, et al. Comparison of osteogenic potentials of BMP4 transduced stem cells from autologous bone marrow and fat tissue in a rabbit model of calvarial defects. Calcif Tissue Int, 2009, 85(1): 55-65.
|