1. |
夏远军, 章莹, 李丽华, 等. rhBMP-2/壳聚糖/硫酸葡聚糖复合微球制备及生物安全性研究. 中国骨科临床与基础研究杂志, 2013, 5(6): 345-349.
|
2. |
夏远军, 章莹, 李丽华, 等. 壳聚糖/硫酸葡聚糖/重组人骨形态发生蛋白-2 微球对大鼠骨髓基质干细胞增殖与分化的影响. 中华创伤骨科杂志, 2014, 16(5): 421-426.
|
3. |
夏远军. DSs/rh-BMP-2/CS 复合微球的制备及成骨活性研究. 广州: 南方医科大学, 2013.
|
4. |
余翔, 夏远军, 郑晓辉, 等. 两种壳聚糖载 rhBMP-2 纳米微球对 SD 大鼠体内异位成骨的影响. 中国临床解剖学杂志, 2016, 34(4): 412-418.
|
5. |
Mobasseri R, Karimi M, Tian L, et al. Hydrophobic lapatinib encapsulated dextran-chitosan nanoparticles using a toxic solvent free method: fabrication, release property & in vitro anti-cancer activity. Mater Sci Eng C Mater Biol Appl, 2017, 74: 413-421.
|
6. |
Saboktakin MR, Tabatabaie RM, Maharramov A, et al. Synthesis and characterization of pH-dependent glycol chitosan and dextran sulfate nanoparticles for effective brain cancer treatment. Int J Biol Macromol, 2011, 49(4): 747-751.
|
7. |
Chaiyasan W, Srinivas SP, Tiyaboonchai W. Mucoadhesive chitosan-dextran sulfate nanoparticles for sustained drug delivery to the ocular surface. J Ocul Pharmacol Ther, 2013, 29(2): 200-207.
|
8. |
Chaiyasan W, Prapubut S, Kompella UB, et al. Penetration of mucoadhesive chitosan-dextran sulfate nanoparticles into the porcine cornea. Colloids Surf B Biointerfaces, 2017, 149: 288-296.
|
9. |
Gnanadhas DP, Ben Thomas M, Elango M, et al. Chitosan-dextran sulphate nanocapsule drug delivery system as an effective therapeutic against intraphagosomal pathogen Salmonella. J Antimicrob Chemother, 2013, 68(11): 2576-2586.
|
10. |
Sharma S, Mukkur TK, Benson HA, et al. Enhanced immune response against pertussis toxoid by IgA-loaded chitosan-dextran sulfate nanoparticles. J Pharm Sci, 2012, 101(1): 233-244.
|
11. |
Zaman P, Wang J, Blau A, et al. Incorporation of heparin-binding proteins into preformed dextran sulfate-chitosan nanoparticles. Int J Nanomedicine, 2016, 11: 6149-6159.
|
12. |
Costalat M, David L, Delair T. Reversible controlled assembly of chitosan and dextran sulfate: a new method for nanoparticle elaboration. Carbohydr Polym, 2014, 102: 717-726.
|
13. |
Costalat M, David L, Delair T. Reversible controlled assembly of chitosan and dextran sulfate: a new method for nanoparticle elaboration. Carbohydr Polym, 2014, 102: 717-726.
|
14. |
Celik T, Yuksel D, Kosker M, et al. Vascularization of coralline versus synthetic hydroxyapatite orbital implants assessed by gadolinium enhanced magnetic resonance imaging. Curr Eye Res, 2014, 40(3): 346-353.
|
15. |
Yao AH, Li XD, Xiong L, et al. Hollow hydroxyapatite microspheres/chitosan composite as a sustained delivery vehicle for rhBMP-2 in the treatment of bone defects. J Mater Sci Mater Med, 2015, 26(1): 5336.
|
16. |
Riley EH, Lane JM, Urist MR, et al. Bone morphogenetic protein-2: biology and applications. Clin Orthop Relat Res, 1996, (324): 39-46.
|
17. |
Katagiri T, Yamaguchi A, Ikeda T, et al. The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem Biophys Res Commun, 1990, 172(1): 295-299.
|
18. |
Hughes FJ, Collyer J, Stanfield M, et al. The effects of bone morphogenetic protein-2, -4, and-6 on differentiation of rat osteoblast cells in vitro. Endocrinology, 1995, 136(6): 2671-2677.
|
19. |
Long MW, Robinson JA, Ashcraft EA, et al. Regulation of human bone marrow-derived osteoprogenitor cells by osteogenic growth factors. J Clin Invest, 1995, 95(2): 881-887.
|
20. |
Katagiri T, Yamaguchi A, Komaki M, et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol, 1994, 127(6 Pt 1): 1755-1766.
|
21. |
Ho ST, Hutmacher DW. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials, 2006, 27(8): 1362-1376.
|
22. |
李东亚, 郑欣, 邱旭升, 等. 兔桡骨骨缺损动物模型中骨缺损长度及缺损位置的影像学比较研究. 中国矫形外科杂志, 2014, 22(8): 737-741.
|
23. |
周芳, 李静, 余磊, 等. 兔桡骨临界骨缺损模型的制备. 中国组织工程研究与临床康复, 2011, 15(50): 9385-9388.
|