1. |
Spindler KP, Warren TA, Callison JC Jr, et al. Clinical outcome at a minimum of five years after reconstruction of the anterior cruciate ligament. J Bone Joint Surg (Am), 2005, 87(8): 1673-1679.
|
2. |
Lohmander LS, Englund PM, Dahl LL, et al. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med, 2007, 35(10): 1756-1769.
|
3. |
张承昊, 李棋, 唐新, 等. 促进腱-骨愈合方法的研究进展. 中国修复重建外科杂志, 2015, 29(7): 912-916.
|
4. |
Sridhar R, Lakshminarayanan R, Madhaiyan K, et al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev, 2015, 44(3): 790-814.
|
5. |
Claes S, Verdonk P, Forsyth R, et al. The " ligamentization” process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature. Am J Sports Med, 2011, 39(11): 2476-2483.
|
6. |
Atesok K, Fu FH, Wolf MR, et al. Augmentation of tendon-to-bone healing. J Bone Joint Surg (Am), 2014, 96(6): 513-521.
|
7. |
Zhang K, Wang H, Huang C, et al. Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering. J Biomed Mater Res A, 2010, 93(3): 984-993.
|
8. |
Wang CY, Zhang KH, Fan CY, et al. Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomater, 2011, 7(2): 634-643.
|
9. |
Chen J, Yan C, Zhu M, et al. Electrospun nanofibrous SF/P(LLA-CL) membrane: a potential substratum for endothelial keratoplasty. Int J Nanomedicine, 2015, 10: 3337-3350.
|
10. |
Wang Z, Lin M, Xie Q, et al. Electrospun silk fibroin/poly(lactide-co-epsilon-caprolactone) nanofibrous scaffolds for bone regeneration. Int J Nanomedicine, 2016, 11: 1483-1500.
|
11. |
高林峰, 王洪复. 骨基质 Ⅰ 型胶原的增龄性改变. 中华老年医学杂志, 2001, 20(6): 465-467.
|
12. |
Takeuchi A, Ohtsuki C, Miyazaki T, et al. Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid. J Biomed Mater Res A, 2003, 65(2): 283-289.
|
13. |
Shanmugavel S, Reddy VJ, Ramakrishna S, et al. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering. J Biomater Appl, 2014, 29(1): 46-58.
|
14. |
Vetsch JR, Paulsen SJ, Müller R, et al. Effect of fetal bovine serum on mineralization in silk fibroin scaffolds. Acta Biomater, 2015, 13: 277-285.
|
15. |
Midha S, Murab S, Ghosh S. Osteogenic signaling on silk-based matrices. Biomaterials, 2016, 97: 133-153.
|
16. |
Jung SR, Song NJ, Yang DK, et al. Silk proteins stimulate osteoblast differentiation by suppressing the Notch signaling pathway in mesenchymal stem cells. Nutr Res, 2013, 33(2): 162-170.
|
17. |
Wang H, Pieper J, Peters F, et al. Synthetic scaffold morphology controls human dermal connective tissue formation. J Biomed Mater Res A, 2005, 74(4): 523-532.
|
18. |
Li Y, Jiang X, Zhong H, et al. Hierarchical Patterning of Cells with a Microeraser and Electrospun Nanofibers. Small, 2016, 12(9): 1230-1239.
|
19. |
Sperling LE, Reis KP, Pozzobon LG, et al. Influence of random and oriented electrospun fibrous poly(lactic-co-glycolic acid) scaffolds on neural differentiation of mouse embryonic stem cells. J Biomed Mater Res A, 2017, 105(5): 1333-1345.
|
20. |
Yin Z, Chen X, Chen JL, et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials, 2010, 31(8): 2163-2175.
|
21. |
Yin Z, Chen X, Song HX, et al. Electrospun scaffolds for multiple tissues regeneration in vivo through topography dependent induction of lineage specific differentiation. Biomaterials, 2015, 44: 173-185.
|
22. |
Zhang C, Yuan H, Liu H, et al. Well-aligned chitosan-based ultrafine fibers committed teno-lineage differentiation of human induced pluripotent stem cells for Achilles tendon regeneration. Biomaterials, 2015, 53: 716-730.
|