- 1. Department of Orthopedics, Affiliated Hospital of North China University of Science and Technology, Tangshan Hebei, 063000, P.R.China;
- 2. Graduate School of Hebei Medical University, Shijiazhuang Hebei, 050017, P.R.China;
- 3. Medical Research Center, North China University of Science and Technology, Tangshan Hebei, 063000, P.R.China;
Citation: LÜ Qinglie, GOU Yu, TIAN Faming, ZHANG Liu. Research progress on protease-activated receptor 2 in pathogenesis of osteoarthritis. Chinese Journal of Reparative and Reconstructive Surgery, 2017, 31(12): 1517-1522. doi: 10.7507/1002-1892.201705025 Copy
1. | Loeser RF, Goldring SR, Scanzello CR, et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum, 2012, 64(6): 1697-1707. |
2. | 娄思权. 骨关节炎的病理与发病因素. 中华骨科杂志, 1996, 16(1): 56-59. |
3. | Puenpatom RA, Victor TW. Increased prevalence of metabolic syndrome in individuals with osteoarthritis: an analysis of NHANES III data. Postgrad Med, 2009, 121(6): 9-20. |
4. | Martel-Pelletier J, Battista JD, Lajeunesse D. Biochemical Factors in Joint Articular Tissue Degradation in Osteoarthritis. Berlin Heidelberg: Springer, 1999: 156-187. |
5. | Lam FF. Role of protease-activated receptor 2 in joint inflam-mation. Arthritis Rheum, 2007, 56(11): 3514-3517. |
6. | Xiang Y, Masuko-Hongo K, Sekine T, et al. Expression of proteinase-activated receptors (PAR)-2 in articular chondrocytes is modulated by IL-1beta, TNF-alpha and TGF-beta. Osteoarthritis Cartilage, 2006, 14(11): 1163-1173. |
7. | Steinhoff M, Vergnolle N, Young SH, et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med, 2000, 6(2): 151-158. |
8. | Boileau C, Amiable N, Martel-Pelletier J, et al. Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study. Arthritis Res Ther, 2007, 9(6): R121. |
9. | Macfarlane SR, Seatter MJ, Kanke T, et al. Proteinase-activated receptors. Pharmacol Rev, 2001, 53(2): 245-282. |
10. | Coughlin SR. Thrombin signalling and protease-activated receptors. Nature, 2000, 407(6801): 258-264. |
11. | Coughlin SR, Camerer E. PARticipation in inflammation. J Clin Invest, 2003, 111(1): 25-27. |
12. | Nystedt S, Emilsson K, Wahlestedt C, et al. Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci U S A, 1994, 91(20): 9208-9212. |
13. | Trejo J. Protease-activated receptors: new concepts in regulation of G protein-coupled receptor signaling and trafficking. J Pharmacol Exp Ther, 2003, 307(2): 437-442. |
14. | 牛青霞, 何韶衡. 蛋白酶活化受体-2 的研究进展. 生理科学进展, 2003, 34(4): 373-375. |
15. | 马怡茗, 赵新华, 包韩, 等. 蛋白酶活化受体 2 促进结肠癌细胞与基质粘附. 现代生物医学进展, 2015, 15(5): 801-803. |
16. | 童晓红, 丁家望. 蛋白酶活化受体-2 与心血管疾病的关系. 生命的化学, 2009, 29(3): 418-421. |
17. | 黄邵洪, 安军, 李昀, 等. 激活蛋白酶活化受体 2 抑制肺癌细胞凋亡. 中国药理学通报, 2014, 30 (5): 684-688. |
18. | Smith R, Ransjö M, Tatarczuch L, et al. Activation of protease-activated receptor-2 leads to inhibition of osteoclast differentiation. J Bone Miner Res, 2004, 19(3): 507-516. |
19. | Mackie EJ, Loh LH, Sivagurunathan S, et al. Protease-activated receptors in the musculoskeletal system. Int J Biochem Cell Biol, 2008, 40(6-7): 1169-1184. |
20. | Abraham LA, Chinni C, Jenkins AL, et al. Expression of protease-activated receptor-2 by osteoblasts. Bone, 2000, 26(1): 7-14. |
21. | Kelso EB, Ferrell WR, Lockhart JC, et al. Expression and proinflammatory role of proteinase-activated receptor 2 in rheumatoid synovium: ex vivo studies using a novel proteinase-activated receptor 2 antagonist. Arthritis Rheum, 2007, 56(3): 765-771. |
22. | Ferrell WR, Lockhart JC, Kelso EB, et al. Essential role for proteinase-activated receptor-2 in arthritis. J Clin Invest, 2003, 111(1): 35-41. |
23. | Busso N, Frasnelli M, Feifel R, et al. Evaluation of protease-activated receptor 2 in murine models of arthritis. Arthritis Rheum, 2007, 56(1): 101-107. |
24. | Belham CM, Tate RJ, Scott PH, et al. Trypsin stimulates proteinase-activated receptor-2-dependent and -independent activation of mitogen-activated protein kinases. Biochem J, 1996, 320 (Pt 3): 939-946. |
25. | Kanke T, Macfarlane SR, Seatter MJ, et al. Proteinase-activated receptor-2-mediated activation of stress-activated protein kinases and inhibitory kappa B kinases in NCTC 2544 keratinocytes. J Biol Chem, 2001, 276(34): 31657-31666. |
26. | Hirota Y, Osuga Y, Hirata T, et al. Activation of protease-activated receptor 2 stimulates proliferation and interleukin (IL)-6 and IL-8 secretion of endometriotic stromal cells. Hum Reprod, 2005, 20(12): 3547-3553. |
27. | Asokananthan N, Graham PT, Fink J, et al. Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J Immunol, 2002, 168(7): 3577-3585. |
28. | Ramachandran R, Morice AH, Compton SJ. Proteinase-activated receptor2 agonists upregulate granulocyte colony-stimulating factor, IL-8, and VCAM-1 expression in human bronchial fibroblasts. Am J Respir Cell Mol Biol, 2006, 35(1): 133-141. |
29. | Huesa C, Ortiz AC, Dunning L, et al. Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology. Ann Rheum Dis, 2016, 75(11): 1989-1997. |
30. | Milner JM, Patel A, Davidson RK, et al. Matriptase is a novel initiator of cartilage matrix degradation in osteoarthritis. Arthritis Rheum, 2010, 62(7): 1955-1966. |
31. | Osta B, Roux JP, Lavocat F, et al. Differential Effects of IL-17A and TNF-α on Osteoblastic Differentiation of Isolated Synoviocytes and on Bone Explants from Arthritis Patients. Front Immunol, 2015, 6: 151. |
32. | Shen S, Guo J, Luo Y, et al. Functional proteomics revealed IL-1β amplifies TNF downstream protein signals in human synoviocytes in a TNF-independent manner. Biochem Biophys Res Commun, 2014, 450(1): 538-544. |
33. | Ismail HM, Yamamoto K, Vincent TL, et al. Interleukin-1 Acts via the JNK-2 Signaling Pathway to Induce Aggrecan Degradation by Human Chondrocytes. Arthritis Rheumatol, 2015, 67(7): 1826-1836. |
34. | Attur MG, Patel IR, Patel RN, et al. Autocrine production of IL-1 beta by human osteoarthritis-affected cartilage and differential regulation of endogenous nitric oxide, IL-6, prostaglandin E2, and IL-8. Proc Assoc Am Physicians, 1998, 110(1): 65-72. |
35. | 高宗强, 郭雄, 陈君长, 等. 大骨节病、骨关节炎软骨细胞分泌 IL-1β、TNF-α 及透明质酸对其影响实验研究. 陕西医学杂志, 2015, 44(7): 774-778. |
36. | Nystedt S, Ramakrishnan V, Sundelin J. The proteinase-activated receptor 2 is induced by inflammatory mediators in human endothelial cells. Comparison with the thrombin receptor. J Biol Chem, 1996, 271(25): 14910-14915. |
37. | 张延辉, 高春阳, 李少华. 骨性关节炎患者退变软骨及滑膜组织中细胞因子的表达. 中国组织工程研究, 2013, 17(37): 6671-6675. |
38. | Arokoski JP, Lammi MJ, Hyttinen MM, et al. Etiopathogenesis of osteoarthritis. Duodecim, 2001, 117(16): 1617-1626. |
39. | Ju JH, Kang KY, Kim IJ, et al. Three-dimensional ultrasonographic application for analyzing synovial hypertrophy of the knee in patients with osteoarthritis. J Ultrasound Med, 2008, 27(5): 729-736. |
40. | Sasaki K, Takagi M, Konttinen YT, et al. Upregulation of matrix metalloproteinase (MMP)-1 and its activator MMP-3 of human osteoblast by uniaxial cyclic stimulation. J Biomed Mater Res B Appl Biomater, 2007, 80(2): 491-498. |
41. | Shiomi T, Lemaître V, D’Armiento J, et al. Matrix metallo-proteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non-neoplastic diseases. Pathol Int, 2010, 60(7): 477-496. |
42. | Amiable N, Tat SK, Lajeunesse D, et al. Proteinase-activated receptor (PAR)-2 activation impacts bone resorptive properties of human osteoarthritic subchondral bone osteoblasts. Bone, 2009, 44(6): 1143-1150. |
43. | Lee SJ, Kim MS, Park JY, et al. 15-Deoxy-delta 12,14-prostaglandin J2 induces apoptosis via JNK-mediated mitochondrial pathway in osteoblastic cells. Toxicology, 2008, 248(2-3): 121-129. |
44. | Engsig MT, Chen QJ, Vu TH, et al. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol, 2000, 151(4): 879-889. |
45. | Bigg HF, Rowan AD, Barker MD, et al. Activity of matrix metalloproteinase-9 against native collagen types I and III. FEBS J, 2007, 274(5): 1246-1255. |
46. | Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev, 2008, 29(2): 155-192. |
47. | Kwan Tat S, Padrines M, Théoleyre S, et al. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev, 2004, 15(1): 49-60. |
48. | Honma M, Ikebuchi Y, Kariya Y, et al. Regulatory mechanisms of RANKL presentation to osteoclast precursors. Curr Osteoporos Rep, 2014, 12(1): 115-120. |
49. | Kwan Tat S, Pelletier JP, Lajeunesse D, et al. The differential expression of osteoprotegerin (OPG) and receptor activator of nuclear factor kappaB ligand (RANKL) in human osteoarthritic subchondral bone osteoblasts is an indicator of the metabolic state of these disease cells. Clin Exp Rheumatol, 2008, 26(2): 295-304. |
50. | Sakao K, Takahashi KA, Mazda O, et al. Enhanced expression of interleukin-6, matrix metalloproteinase-13, and receptor activator of NF-kappaB ligand in cells derived from osteoarthritic subchondral bone. J Orthop Sci, 2008, 13(3): 202-210. |
51. | Kudo O, Sabokbar A, Pocock A, et al. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone, 2003, 32(1): 1-7. |
52. | Liu XH, Kirschenbaum A, Yao S, et al. Interactive effect of interleukin-6 and prostaglandin E2 on osteoclastogenesis via the OPG/RANKL/RANK system. Ann N Y Acad Sci, 2006, 1068: 225-233. |
53. | Ayral X, Pickering EH, Woodworth TG, et al. Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis—results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthritis Cartilage, 2005, 13(5): 361-367. |
54. | Roemer FW, Kassim Javaid M, Guermazi A, et al. Anatomical distribution of synovitis in knee osteoarthritis and its association with joint effusion assessed on non-enhanced and contrast-enhanced MRI. Osteoarthritis Cartilage, 2010, 18(10): 1269-1274. |
55. | Conaghan PG, D’Agostino MA, Le Bars M, et al. Clinical and ultrasonographic predictors of joint replacement for knee osteoarthritis: results from a large, 3-year, prospective EULAR study. Ann Rheum Dis, 2010, 69(4): 644-647. |
56. | Roemer FW, Guermazi A, Felson DT, et al. Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study. Ann Rheum Dis, 2011, 70(10): 1804-1809. |
57. | Tindell AG, Kelso EB, Ferrell WR, et al. Correlation of protease-activated receptor-2 expression and synovitis in rheumatoid and osteoarthritis. Rheumatol Int, 2012, 32(10): 3077-3086. |
58. | 郑剑平, 利春叶. 白细胞介素-1 在骨性关节炎的水平及作用. 中国实用医药, 2009, 4(15): 5-7. |
59. | Daheshia M, Yao JQ. The interleukin 1beta pathway in the pathogenesis of osteoarthritis. J Rheumatol, 2008, 35(12): 2306-2312. |
60. | Caron JP, Fernandes JC, Martel-Pelletier J, et al. Chondro-protective effect of intraarticular injections of interleukin-1 receptor antagonist in experimental osteoarthritis. Suppression of collagenase-1 expression. Arthritis Rheum, 1996, 39(9): 1535-1544. |
61. | van de Loo FA, Joosten LA, van Lent PL, et al. Role of interleukin-1, tumor necrosis factor alpha, and interleukin-6 in cartilage proteoglycan metabolism and destruction. Effect of in situ blocking in murine antigen- and zymosan-induced arthritis. Arthritis Rheum, 1995, 38(2): 164-172. |
62. | Vergnolle N, Bunnett NW, Sharkey KA, et al. Proteinase-activated receptor-2 and hyperalgesia: A novel pain pathway. Nat Med, 2001, 7(7): 821-826. |
63. | Orita S, Ishikawa T, Miyagi M, et al. Pain-related sensory innervation in monoiodoacetate-induced osteoarthritis in rat knees that gradually develops neuronal injury in addition to inflammatory pain. BMC Musculoskelet Disord, 2011, 12: 134. |
64. | Kallakuri S, Singh A, Chen C, et al. Demonstration of substance P, calcitonin gene-related peptide, and protein gene product 9.5 containing nerve fibers in human cervical facet joint capsules. Spine (Phila Pa 1976), 2004, 29(11): 1182-1186. |
65. | 刘小立. 骨关节炎神经病理性疼痛诊疗概述. 中国新药杂志, 2015, 24(18): 2073-2076. |
66. | Schaible HG, Ebersberger A, Natura G. Update on peripheral mechanisms of pain: beyond prostaglandins and cytokines. Arthritis Res Ther, 2011, 13(2): 210. |
67. | Harris JA. Using c-fos as a neural marker of pain. Brain Res Bull, 1998, 45(1): 1-8. |
68. | Etemadi L, Pettersson LM, Danielsen N. UVB irradiation induces rapid changes in galanin, substance P and c-fos immunoreactivity in rat dorsal root ganglia and spinal cord. Peptides, 2017, 87: 71-83. |
69. | Kawabata A, Kawao N, Kuroda R, et al. Specific expression of spinal Fos after PAR-2 stimulation in mast cell-depleted rats. Neuroreport, 2002, 13(4): 511-514. |
70. | Ray A, Shakya A, Ray BK. Inflammation-responsive transcription factors SAF-1 and c-Jun/c-Fos promote canine MMP-1 gene expression. Biochim Biophys Acta, 2005, 1732(1-3): 53-61. |
71. | 李良军, 雷光华, 涂敏, 等. 骨关节炎软骨中衰老相关 β-半乳糖苷酶和 c-Fos 蛋白的表达. 中国组织工程研究与临床康复, 2011, 15(2): 196-200. |
72. | Lawrence JJ, Grinspan ZM, Statland JM, et al. Muscarinic receptor activation tunes mouse stratum oriens interneurones to amplify spike reliability. J Physiol, 2006, 571(Pt 3): 555-562. |
73. | Gavenis K, Schumacher C, Schneider U, et al. Expression of ion channels of the TRP family in articular chondrocytes from osteoarthritic patients: changes between native and in vitro propagated chondrocytes. Mol Cell Biochem, 2009, 321(1-2): 135-143. |
74. | Engler A, Aeschlimann A, Simmen BR, et al. Expression of transient receptor potential vanilloid 1 (TRPV1) in synovial fibroblasts from patients with osteoarthritis and rheumatoid arthritis. Biochem Biophys Res Commun, 2007, 359(4): 884-888. |
75. | Fernihough J, Gentry C, Bevan S, et al. Regulation of calcitonin gene-related peptide and TRPV1 in a rat model of osteoarthritis. Neurosci Lett, 2005, 388(2): 75-80. |
76. | Remadevi R, Szallisi A. Adlea (ALGRX-4975), an injectable capsaicin (TRPV1 receptor agonist) formulation for longlasting pain relief. IDrugs, 2008, 11(2): 120-132. |
77. | Chu KL, Chandran P, Joshi SK, et al. TRPV1-related modulation of spinal neuronal activity and behavior in a rat model of osteoarthritic pain. Brain Res, 2011, 1369: 158-166. |
78. | Russell FA, McDougall JJ. Proteinase activated receptor (PAR) involvement in mediating arthritis pain and inflammation. Inflamm Res, 2009, 58(3): 119-126. |
- 1. Loeser RF, Goldring SR, Scanzello CR, et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum, 2012, 64(6): 1697-1707.
- 2. 娄思权. 骨关节炎的病理与发病因素. 中华骨科杂志, 1996, 16(1): 56-59.
- 3. Puenpatom RA, Victor TW. Increased prevalence of metabolic syndrome in individuals with osteoarthritis: an analysis of NHANES III data. Postgrad Med, 2009, 121(6): 9-20.
- 4. Martel-Pelletier J, Battista JD, Lajeunesse D. Biochemical Factors in Joint Articular Tissue Degradation in Osteoarthritis. Berlin Heidelberg: Springer, 1999: 156-187.
- 5. Lam FF. Role of protease-activated receptor 2 in joint inflam-mation. Arthritis Rheum, 2007, 56(11): 3514-3517.
- 6. Xiang Y, Masuko-Hongo K, Sekine T, et al. Expression of proteinase-activated receptors (PAR)-2 in articular chondrocytes is modulated by IL-1beta, TNF-alpha and TGF-beta. Osteoarthritis Cartilage, 2006, 14(11): 1163-1173.
- 7. Steinhoff M, Vergnolle N, Young SH, et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med, 2000, 6(2): 151-158.
- 8. Boileau C, Amiable N, Martel-Pelletier J, et al. Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study. Arthritis Res Ther, 2007, 9(6): R121.
- 9. Macfarlane SR, Seatter MJ, Kanke T, et al. Proteinase-activated receptors. Pharmacol Rev, 2001, 53(2): 245-282.
- 10. Coughlin SR. Thrombin signalling and protease-activated receptors. Nature, 2000, 407(6801): 258-264.
- 11. Coughlin SR, Camerer E. PARticipation in inflammation. J Clin Invest, 2003, 111(1): 25-27.
- 12. Nystedt S, Emilsson K, Wahlestedt C, et al. Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci U S A, 1994, 91(20): 9208-9212.
- 13. Trejo J. Protease-activated receptors: new concepts in regulation of G protein-coupled receptor signaling and trafficking. J Pharmacol Exp Ther, 2003, 307(2): 437-442.
- 14. 牛青霞, 何韶衡. 蛋白酶活化受体-2 的研究进展. 生理科学进展, 2003, 34(4): 373-375.
- 15. 马怡茗, 赵新华, 包韩, 等. 蛋白酶活化受体 2 促进结肠癌细胞与基质粘附. 现代生物医学进展, 2015, 15(5): 801-803.
- 16. 童晓红, 丁家望. 蛋白酶活化受体-2 与心血管疾病的关系. 生命的化学, 2009, 29(3): 418-421.
- 17. 黄邵洪, 安军, 李昀, 等. 激活蛋白酶活化受体 2 抑制肺癌细胞凋亡. 中国药理学通报, 2014, 30 (5): 684-688.
- 18. Smith R, Ransjö M, Tatarczuch L, et al. Activation of protease-activated receptor-2 leads to inhibition of osteoclast differentiation. J Bone Miner Res, 2004, 19(3): 507-516.
- 19. Mackie EJ, Loh LH, Sivagurunathan S, et al. Protease-activated receptors in the musculoskeletal system. Int J Biochem Cell Biol, 2008, 40(6-7): 1169-1184.
- 20. Abraham LA, Chinni C, Jenkins AL, et al. Expression of protease-activated receptor-2 by osteoblasts. Bone, 2000, 26(1): 7-14.
- 21. Kelso EB, Ferrell WR, Lockhart JC, et al. Expression and proinflammatory role of proteinase-activated receptor 2 in rheumatoid synovium: ex vivo studies using a novel proteinase-activated receptor 2 antagonist. Arthritis Rheum, 2007, 56(3): 765-771.
- 22. Ferrell WR, Lockhart JC, Kelso EB, et al. Essential role for proteinase-activated receptor-2 in arthritis. J Clin Invest, 2003, 111(1): 35-41.
- 23. Busso N, Frasnelli M, Feifel R, et al. Evaluation of protease-activated receptor 2 in murine models of arthritis. Arthritis Rheum, 2007, 56(1): 101-107.
- 24. Belham CM, Tate RJ, Scott PH, et al. Trypsin stimulates proteinase-activated receptor-2-dependent and -independent activation of mitogen-activated protein kinases. Biochem J, 1996, 320 (Pt 3): 939-946.
- 25. Kanke T, Macfarlane SR, Seatter MJ, et al. Proteinase-activated receptor-2-mediated activation of stress-activated protein kinases and inhibitory kappa B kinases in NCTC 2544 keratinocytes. J Biol Chem, 2001, 276(34): 31657-31666.
- 26. Hirota Y, Osuga Y, Hirata T, et al. Activation of protease-activated receptor 2 stimulates proliferation and interleukin (IL)-6 and IL-8 secretion of endometriotic stromal cells. Hum Reprod, 2005, 20(12): 3547-3553.
- 27. Asokananthan N, Graham PT, Fink J, et al. Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J Immunol, 2002, 168(7): 3577-3585.
- 28. Ramachandran R, Morice AH, Compton SJ. Proteinase-activated receptor2 agonists upregulate granulocyte colony-stimulating factor, IL-8, and VCAM-1 expression in human bronchial fibroblasts. Am J Respir Cell Mol Biol, 2006, 35(1): 133-141.
- 29. Huesa C, Ortiz AC, Dunning L, et al. Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology. Ann Rheum Dis, 2016, 75(11): 1989-1997.
- 30. Milner JM, Patel A, Davidson RK, et al. Matriptase is a novel initiator of cartilage matrix degradation in osteoarthritis. Arthritis Rheum, 2010, 62(7): 1955-1966.
- 31. Osta B, Roux JP, Lavocat F, et al. Differential Effects of IL-17A and TNF-α on Osteoblastic Differentiation of Isolated Synoviocytes and on Bone Explants from Arthritis Patients. Front Immunol, 2015, 6: 151.
- 32. Shen S, Guo J, Luo Y, et al. Functional proteomics revealed IL-1β amplifies TNF downstream protein signals in human synoviocytes in a TNF-independent manner. Biochem Biophys Res Commun, 2014, 450(1): 538-544.
- 33. Ismail HM, Yamamoto K, Vincent TL, et al. Interleukin-1 Acts via the JNK-2 Signaling Pathway to Induce Aggrecan Degradation by Human Chondrocytes. Arthritis Rheumatol, 2015, 67(7): 1826-1836.
- 34. Attur MG, Patel IR, Patel RN, et al. Autocrine production of IL-1 beta by human osteoarthritis-affected cartilage and differential regulation of endogenous nitric oxide, IL-6, prostaglandin E2, and IL-8. Proc Assoc Am Physicians, 1998, 110(1): 65-72.
- 35. 高宗强, 郭雄, 陈君长, 等. 大骨节病、骨关节炎软骨细胞分泌 IL-1β、TNF-α 及透明质酸对其影响实验研究. 陕西医学杂志, 2015, 44(7): 774-778.
- 36. Nystedt S, Ramakrishnan V, Sundelin J. The proteinase-activated receptor 2 is induced by inflammatory mediators in human endothelial cells. Comparison with the thrombin receptor. J Biol Chem, 1996, 271(25): 14910-14915.
- 37. 张延辉, 高春阳, 李少华. 骨性关节炎患者退变软骨及滑膜组织中细胞因子的表达. 中国组织工程研究, 2013, 17(37): 6671-6675.
- 38. Arokoski JP, Lammi MJ, Hyttinen MM, et al. Etiopathogenesis of osteoarthritis. Duodecim, 2001, 117(16): 1617-1626.
- 39. Ju JH, Kang KY, Kim IJ, et al. Three-dimensional ultrasonographic application for analyzing synovial hypertrophy of the knee in patients with osteoarthritis. J Ultrasound Med, 2008, 27(5): 729-736.
- 40. Sasaki K, Takagi M, Konttinen YT, et al. Upregulation of matrix metalloproteinase (MMP)-1 and its activator MMP-3 of human osteoblast by uniaxial cyclic stimulation. J Biomed Mater Res B Appl Biomater, 2007, 80(2): 491-498.
- 41. Shiomi T, Lemaître V, D’Armiento J, et al. Matrix metallo-proteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non-neoplastic diseases. Pathol Int, 2010, 60(7): 477-496.
- 42. Amiable N, Tat SK, Lajeunesse D, et al. Proteinase-activated receptor (PAR)-2 activation impacts bone resorptive properties of human osteoarthritic subchondral bone osteoblasts. Bone, 2009, 44(6): 1143-1150.
- 43. Lee SJ, Kim MS, Park JY, et al. 15-Deoxy-delta 12,14-prostaglandin J2 induces apoptosis via JNK-mediated mitochondrial pathway in osteoblastic cells. Toxicology, 2008, 248(2-3): 121-129.
- 44. Engsig MT, Chen QJ, Vu TH, et al. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol, 2000, 151(4): 879-889.
- 45. Bigg HF, Rowan AD, Barker MD, et al. Activity of matrix metalloproteinase-9 against native collagen types I and III. FEBS J, 2007, 274(5): 1246-1255.
- 46. Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev, 2008, 29(2): 155-192.
- 47. Kwan Tat S, Padrines M, Théoleyre S, et al. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev, 2004, 15(1): 49-60.
- 48. Honma M, Ikebuchi Y, Kariya Y, et al. Regulatory mechanisms of RANKL presentation to osteoclast precursors. Curr Osteoporos Rep, 2014, 12(1): 115-120.
- 49. Kwan Tat S, Pelletier JP, Lajeunesse D, et al. The differential expression of osteoprotegerin (OPG) and receptor activator of nuclear factor kappaB ligand (RANKL) in human osteoarthritic subchondral bone osteoblasts is an indicator of the metabolic state of these disease cells. Clin Exp Rheumatol, 2008, 26(2): 295-304.
- 50. Sakao K, Takahashi KA, Mazda O, et al. Enhanced expression of interleukin-6, matrix metalloproteinase-13, and receptor activator of NF-kappaB ligand in cells derived from osteoarthritic subchondral bone. J Orthop Sci, 2008, 13(3): 202-210.
- 51. Kudo O, Sabokbar A, Pocock A, et al. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone, 2003, 32(1): 1-7.
- 52. Liu XH, Kirschenbaum A, Yao S, et al. Interactive effect of interleukin-6 and prostaglandin E2 on osteoclastogenesis via the OPG/RANKL/RANK system. Ann N Y Acad Sci, 2006, 1068: 225-233.
- 53. Ayral X, Pickering EH, Woodworth TG, et al. Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis—results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthritis Cartilage, 2005, 13(5): 361-367.
- 54. Roemer FW, Kassim Javaid M, Guermazi A, et al. Anatomical distribution of synovitis in knee osteoarthritis and its association with joint effusion assessed on non-enhanced and contrast-enhanced MRI. Osteoarthritis Cartilage, 2010, 18(10): 1269-1274.
- 55. Conaghan PG, D’Agostino MA, Le Bars M, et al. Clinical and ultrasonographic predictors of joint replacement for knee osteoarthritis: results from a large, 3-year, prospective EULAR study. Ann Rheum Dis, 2010, 69(4): 644-647.
- 56. Roemer FW, Guermazi A, Felson DT, et al. Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study. Ann Rheum Dis, 2011, 70(10): 1804-1809.
- 57. Tindell AG, Kelso EB, Ferrell WR, et al. Correlation of protease-activated receptor-2 expression and synovitis in rheumatoid and osteoarthritis. Rheumatol Int, 2012, 32(10): 3077-3086.
- 58. 郑剑平, 利春叶. 白细胞介素-1 在骨性关节炎的水平及作用. 中国实用医药, 2009, 4(15): 5-7.
- 59. Daheshia M, Yao JQ. The interleukin 1beta pathway in the pathogenesis of osteoarthritis. J Rheumatol, 2008, 35(12): 2306-2312.
- 60. Caron JP, Fernandes JC, Martel-Pelletier J, et al. Chondro-protective effect of intraarticular injections of interleukin-1 receptor antagonist in experimental osteoarthritis. Suppression of collagenase-1 expression. Arthritis Rheum, 1996, 39(9): 1535-1544.
- 61. van de Loo FA, Joosten LA, van Lent PL, et al. Role of interleukin-1, tumor necrosis factor alpha, and interleukin-6 in cartilage proteoglycan metabolism and destruction. Effect of in situ blocking in murine antigen- and zymosan-induced arthritis. Arthritis Rheum, 1995, 38(2): 164-172.
- 62. Vergnolle N, Bunnett NW, Sharkey KA, et al. Proteinase-activated receptor-2 and hyperalgesia: A novel pain pathway. Nat Med, 2001, 7(7): 821-826.
- 63. Orita S, Ishikawa T, Miyagi M, et al. Pain-related sensory innervation in monoiodoacetate-induced osteoarthritis in rat knees that gradually develops neuronal injury in addition to inflammatory pain. BMC Musculoskelet Disord, 2011, 12: 134.
- 64. Kallakuri S, Singh A, Chen C, et al. Demonstration of substance P, calcitonin gene-related peptide, and protein gene product 9.5 containing nerve fibers in human cervical facet joint capsules. Spine (Phila Pa 1976), 2004, 29(11): 1182-1186.
- 65. 刘小立. 骨关节炎神经病理性疼痛诊疗概述. 中国新药杂志, 2015, 24(18): 2073-2076.
- 66. Schaible HG, Ebersberger A, Natura G. Update on peripheral mechanisms of pain: beyond prostaglandins and cytokines. Arthritis Res Ther, 2011, 13(2): 210.
- 67. Harris JA. Using c-fos as a neural marker of pain. Brain Res Bull, 1998, 45(1): 1-8.
- 68. Etemadi L, Pettersson LM, Danielsen N. UVB irradiation induces rapid changes in galanin, substance P and c-fos immunoreactivity in rat dorsal root ganglia and spinal cord. Peptides, 2017, 87: 71-83.
- 69. Kawabata A, Kawao N, Kuroda R, et al. Specific expression of spinal Fos after PAR-2 stimulation in mast cell-depleted rats. Neuroreport, 2002, 13(4): 511-514.
- 70. Ray A, Shakya A, Ray BK. Inflammation-responsive transcription factors SAF-1 and c-Jun/c-Fos promote canine MMP-1 gene expression. Biochim Biophys Acta, 2005, 1732(1-3): 53-61.
- 71. 李良军, 雷光华, 涂敏, 等. 骨关节炎软骨中衰老相关 β-半乳糖苷酶和 c-Fos 蛋白的表达. 中国组织工程研究与临床康复, 2011, 15(2): 196-200.
- 72. Lawrence JJ, Grinspan ZM, Statland JM, et al. Muscarinic receptor activation tunes mouse stratum oriens interneurones to amplify spike reliability. J Physiol, 2006, 571(Pt 3): 555-562.
- 73. Gavenis K, Schumacher C, Schneider U, et al. Expression of ion channels of the TRP family in articular chondrocytes from osteoarthritic patients: changes between native and in vitro propagated chondrocytes. Mol Cell Biochem, 2009, 321(1-2): 135-143.
- 74. Engler A, Aeschlimann A, Simmen BR, et al. Expression of transient receptor potential vanilloid 1 (TRPV1) in synovial fibroblasts from patients with osteoarthritis and rheumatoid arthritis. Biochem Biophys Res Commun, 2007, 359(4): 884-888.
- 75. Fernihough J, Gentry C, Bevan S, et al. Regulation of calcitonin gene-related peptide and TRPV1 in a rat model of osteoarthritis. Neurosci Lett, 2005, 388(2): 75-80.
- 76. Remadevi R, Szallisi A. Adlea (ALGRX-4975), an injectable capsaicin (TRPV1 receptor agonist) formulation for longlasting pain relief. IDrugs, 2008, 11(2): 120-132.
- 77. Chu KL, Chandran P, Joshi SK, et al. TRPV1-related modulation of spinal neuronal activity and behavior in a rat model of osteoarthritic pain. Brain Res, 2011, 1369: 158-166.
- 78. Russell FA, McDougall JJ. Proteinase activated receptor (PAR) involvement in mediating arthritis pain and inflammation. Inflamm Res, 2009, 58(3): 119-126.
-
Previous Article
Research and application progress of bioactive glass in bone repair -
Next Article
经后路超声骨刀双侧切除齿状突治疗颅底凹陷症合并不可复性寰枢关节脱位一例