• Department of Medical Laboratory, Weifang Medical University & Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, WeifangMedical University & Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang Shangdong, 261053, P.R.China;
ZHAO Ronglan, Email: zhaoronglan76@sina.com
Export PDF Favorites Scan Get Citation

Objective  To investigate the effects of nucleus localization signal linked nucleic kinase substrate short peptide (NNS) conjugated chitosan (CS) (NNSCS) mediated the transfection of microRNA-140 (miR-140) in rabbit articular chondrocytes in vitro. Methods  Recombinant plasmid GV268-miR-140 and empty plasmid GV268 were combined with NNSCS to form NNSCS/pDNA complexes, respectively. Chondrocytes were isolated and cultured through trypsin and collagenase digestion from articular cartilage of newborn New Zealand white rabbits. The second generation chondrocytes were divided into 3 intervention groups: normal cell control group (group A), NNSCS/GV268 empty plasmid transfection group (group B), and NNSCS/GV268-miR-140 transfection group (group C). NNSCS/GV268 and NNSCS/GV268-miR- 140 complexes were transiently transfected into cells of groups B and C. After transfection, real-time fluorescent quantitative PCR (RT-qPCR) was used to detect the expressions of exogenous miR-140; Annexin Ⅴ-FITC/PI double staining and MTT assay were used to detect the effect of exogenous miR-140 on apoptosis and proliferation of transfected chondrocytes; the expressions of Sox9, Aggrecan, and histone deacetylase 4 (Hdac4) were detected by RT-qPCR. Results  RT-qPCR showed that the expression of miR-140 in group C was significantly higher than that in groups A and B (P<0.05). Compared with groups A and B, the apoptosis rate in group C was decreased and the proliferation activity was improved, Sox9 and Aggrecan gene expressions were significantly up-regulated, and Hdac4 gene expression was significantly down-regulated (P<0.05). There was no significant difference in above indexes between groups A and B (P>0.05). Conclusion  Exogenous gene can be carried into the chondrocytes by NNSCS and expressed efficiently, the high expression of miR-140 can improve the biological activity of chondrocytes cultured in vitro, which provides important experimental basis for the treatment of cartilage damage diseases.

Citation: ZHANG Yangyang, PENG Xiaoxiang, SONG Wei, SUN Yanli, WANG Lujuan, LI Qian, ZHAO Ronglan. Effects of microRNA-140 gene transfection with nucleus localization signal linked nucleic kinase substrate short peptide conjugated chitosan on rabbit articular chondrocytes. Chinese Journal of Reparative and Reconstructive Surgery, 2017, 31(10): 1256-1261. doi: 10.7507/1002-1892.201705088 Copy

  • Previous Article

    Biocompatibility research of true bone ceramics
  • Next Article

    Study on feasibility of HaCaT epidermal model as an alternative to skin irritation in vitro