1. |
Brown WE, Chow LC. A new calcium phosphate setting cement. J Dent Res, 1983, 62: 672-679.
|
2. |
Stiller M, Kluk E, Bohner M, et al. Performance of β-tricalcium phosphate granules and putty, bone grafting materials after bilateral sinus flooraugmentation in humans. Biomaterials, 2014, 35(10): 3154-3163.
|
3. |
Bohner M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J, 2001, 10 Suppl 2: S114-121.
|
4. |
O’Neill R, McCarthy HO, Montufar EB, et al. Critical review: Injectability of calcium phosphate pastes and cements. Acta Biomater, 2017, 50: 1-19.
|
5. |
Niu LN, Jiao K, Wang TD, et al. A review of the bioactivity of hydraulic calcium silicate cements. J Dent, 2014, 42(5): 517-533.
|
6. |
Urist MR, DeLange RJ, Finerman GA. Bone cell differentiation and growth factors. Science, 1983, 220(4598): 680-686.
|
7. |
袁清霞, 赵龙岩, 程杰, 等. W/O/W 复乳溶剂蒸发法制备水溶性药物微球研究进展. 中国生化药物杂志, 2012, 33(6):920-923.
|
8. |
丁裕明. 新型磷酸钙复合骨水泥的制备及性能研究. 泸州: 西南医科大学, 2016.
|
9. |
Lee DJ, Padilla R, Zhang H, et al. Biological assessment of a calcium silicate incorporated hydroxyapatite-gelatin nanocomposite: a comparison to decellularized bone matrix. Biomed Res Int, 2014, 2014: 837524.
|
10. |
Roy A, Jhunjhunwala S, Bayer E, et al. Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: A viable tunable drug delivery system. Mater Sci Eng C Mater Biol Appl, 2016, 59: 92-101.
|
11. |
Habraken WJ, Wolke JG, Mikos AG, et al. PLGA microsphere/calcium phosphate cement composites for tissue engineering: in vitro release and degradation characteristics. J Biomater Sci Polym Ed, 2008, 19(9): 1171-1188.
|
12. |
Wagoner-Johnson AJ, Herschler BA. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater, 2011, 7(1): 16-30.
|
13. |
Fernández E, Sarda S, Hamcerencu M, et al. High-strength apatitic cement by modification with superplasticizers. Biomaterials, 2005, 26(15): 2289-2296.
|
14. |
张淑娴, 郭新全, 邱玉金, 等. 兔椎体骨折动物模型制备的初步探讨. 动物医学进展, 2013, 34(7): 131-134.
|
15. |
Maenz S, Brinkmann O, Kunisch E, et al. Enhanced bone formation in sheep vertebral bodies after minimally invasive treatment with a novel, PLGA fiber-reinforced brushite cement. Spine J, 2016, 17(5): 709-719.
|
16. |
Palmer I, Nelson J, Schatton W, et al. Biocompatibility of calcium phosphate bone cement with optimised mechanical properties: an in vivo study. J Mater Sci Mater Med, 2016, 27(12): 91.
|
17. |
Wang ZH, Zhang J, Zhang Q, et al. Evaluation of bone matrix gelatin/fibrin glue and chitosan/gelatin composite scaffolds for cartilage tissue engineering. Genet Mol Res, 2016, 15(3): 1-8.
|
18. |
张育敏, 李晶, 牛晓军, 等. 聚乳酸/骨基质明胶多孔复合材料的生物相容性研究. 中国修复重建外科杂志, 2016, 30(2): 251-257.
|
19. |
Lamghari M, Berland S, Laurent A, et al. Bone reactions to nacre injected percutaneously into the vertebrae of sheep. Biomaterials, 2001, 22(6): 555-562.
|
20. |
Lamghari M, Antonietti P, Berland S, et al. Arthrodesis of lumbar spine transverse processes using nacre in rabbit. J Bone Miner Res, 2001, 16(12): 2232-2237.
|
21. |
Parker RM, Malham GM. Comparison of a calcium phosphate bone substitute with recombinant human bone morphogenetic protein-2: a prospective study of fusion rates, clinical outcomes and complications with 24-month follow-up. Eur Spine J, 2017, 26(3): 754-763.
|
22. |
Zheng YX, Wang J, Lin HT, et al. Reconstruction of orbital defect in rabbits with composite of calcium phosphate cement and recombinant human bone morphogenetic protein-2. Chin Med J (Engl), 2010, 123(24): 3658-3662.
|
23. |
Perrier M, Lu Y, Nemke B, et al. Acceleration of second and fourth metatarsal fracture healing with recombinant human bone morphogenetic protein-2/calcium phosphate cement in horses. Vet Surg, 2008, 37(7): 648-655.
|
24. |
Lovasik BP, Holland CM, Howard BM, et al. Anterior Cervical Discectomy and Fusion: Comparison of Fusion, Dysphagia, and Complication Rates Between Recombinant Human Bone Morphogenetic Protein-2 and Beta-Tricalcium Phosphate. World Neurosurg, 2017, 97: 674-683.e1.
|
25. |
Villavicencio AT, Burneikiene S. RhBMP-2-induced radiculitis in patients undergoing transforaminal lumbar interbody fusion: relationship to dose. Spine J, 2016, 16(10): 1208-1213.
|
26. |
Yu T, Dong C, Shen Z, et al. Vascularization of plastic calcium phosphate cement in vivo induced by in-situ-generated hollow channels. Mater Sci Eng C Mater Biol Appl, 2016, 68: 153-162.
|
27. |
Kasuya A, Sobajima S, Kinoshita M. In vivo degradation and new bone formation of calcium phosphate cement-gelatin powder composite related to macroporosity after in situ gelatin degradation. J Orthop Res, 2012, 30(7): 1103-1111.
|
28. |
Palmer I, Nelson J, Schatton W, et al. Biocompatibility of calcium phosphate bone cement with optimised mechanical properties: an in vivo study. J Mater Sci Mater Med, 2016, 27(12): 191.
|
29. |
Toth JM, Wang M, Lawson J, et al. Radiographic, biomechanical, and histological evaluation of rhBMP-2 in a 3-level intertransverse process spine fusion: an ovine study. J Neurosurg Spine, 2016, 25(6): 733-739.
|