1. |
IJpma FF, Nicolai JP, Meek MF, et al. Sural nerve donor-site morbidity thirty-four years of follow-up. Ann Plast Surg, 2006, 57(4): 391-395.
|
2. |
He Y, Zhang PZ, Sun D, et al. Wnt1 from cochlear Schwann cells enhances neuronal differentiation of transplanted neural stem cells in a rat spiral ganglion neuron degeneration model. Cell Transplant, 2014, 23(6): 747-760.
|
3. |
Tomita K, Nishibayashi A, Yano K, et al. Differentiated Adipose-derived Stem Cells Promote Reinnervation of Rat Skin Flaps. Plast Reconstr Surg Glob Open, 2013, 1(3): e22.
|
4. |
Waris T, Rechardt L, Kyösola K. Reinnervation of human skingrafts: a histochemical study. Plast Reconstr Surg, 1983, 72(4): 439-447.
|
5. |
Ward RS, Tuckett RP, English KB, et al. Substance P axons and sensory threshold increase in burn-graft human skin. J Surg Res, 2004, 118(2): 154-160.
|
6. |
Nedelec B, Hou Q, Sohbi I, et al. Sensory perception and neuroanatomical structures in normal and grafted skin of burn survivors. Burn, 2005, 31(7): 817-830.
|
7. |
Gu JX, Pan JB, Liu HJ, et al. Aesthetic and sensory reconstruction of finger pulp defects using free toe flaps. Aesthetic Plast Surg, 2014, 38(1): 156-163.
|
8. |
Dobreva MP, Pereira PN, Deprest J, et al. On the origin of amniotic stem cells: of mice and men. Int J Dev Biol, 2010, 54(5): 761-777.
|
9. |
甘文婷, 孙新, 陆琰. 人羊膜上皮细胞与人羊膜间充质干细胞生物学特性对比. 中国实验血液学杂志, 2015, 23(4): 1120-1124.
|
10. |
Saito S, Lin YC, Murayama Y, et al. Human amnion-derived cells as a reliable source of stem cells. Curr Mol Med, 2012, 12(10): 1340-1349.
|
11. |
庞希宁, 王竟, 施萍, 等. 人羊膜间充质干细胞的超微结构观察. 基础医学与临床, 2013, 33(11): 1371-1376.
|
12. |
Sakuragawa N, Kakinuma K, Kikuchi A, et al. Human amniotic mesenchymal cells express phenoptypes of neuroglial progenitor cells. Neurosci Res, 2004, 78(2): 208-214.
|
13. |
焦红亮, 王晓宁, 孙剑瑞, 等. 人羊膜间充质干细胞混合培养及向神经样细胞分化. 中华实验外科杂志, 2013, 30(9): 1864-1866.
|
14. |
Nagami M, Tsuno H, Koike C, et al. Isolation and characterization of human amniotic mesenchymal stem cells and their chondrogenic differentiation. Transplantation, 2012, 93(12): 1221-1228.
|
15. |
Kim SW, Zhang HZ, Kim CE, et al. Amniotic mesenchymal stem cells have robust angiogenic properties and are effective in treating hindlimb ischaemia. Cardiovasc Res, 2012, 93(3): 525-534.
|
16. |
Li Y, Guo L, Ahn HS et al. Amniotic mesenchymal stem cells display neurovascular tropism and aid in the recovery of injured peripheral nerves. J Cell Mol Med, 2014, 18(6): 1028-1034.
|
17. |
Tomita K, Madura T, Sakai Y, et al. Glial differentiation of human adipose-derived stem cells: implications for cell-based transplantation therapy. Neuroscience, 2013, 236: 55-65.
|
18. |
Banerjee A, Nurnberger S, Hennerbichler S, et al. In toto differentiation of human amniotic membrane towards the Schwann cell lineage. Cell Tissue Bank, 2014, 15(2): 227-239.
|
19. |
肖露, 周晓华, 王克, 等. 人羊膜上皮细胞的临床应用前景. 现代妇产科进展, 2015, 24(6): 478-480.
|
20. |
Miki T, Grubbs B. Therapeutic potential of placenta-derived stem cells for liver diseases: current status and perspectives. J Obstet Gynaecol Res, 2014, 40(2): 360-368.
|
21. |
Peng L, Wang J, Lu G. Involvement of Gene Methylation Changes in the Differentiation of Human Amniotic Epithelial Cells into Islet-Like Cell Clusters. DNA Cell Biol, 2014, 33(9): 591-598.
|
22. |
Gu XS, Ding F, Yang YM, et al. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol, 2011, 93(2): 204-230.
|
23. |
Kim HA, Mindos T, Parkinson DB. Plastic fantastic: Schwann cells and repair of the peripheral nervous system. Stem Cells Transl Med, 2013, 2(8): 553-557.
|
24. |
Arthur-Farraj PJ, Latouche M, Wilton DK, et al. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron, 2012, 75(4): 633-647.
|
25. |
Court FA, Midha R, Cisterna BA, et al. Morphological evidence for a transport of ribosomes from Schwann cells to regenerating axons. Glia, 2011, 59(10): 1529-1539.
|
26. |
Madduri S, Gander B. Schwann cell delivery of neurotrophic factors of peripheral nerve regeneration. J Peripher Nerv Syst, 2010, 15(2): 93-103.
|
27. |
Shen M, Ji Y, Zhang S, et al. A proteome map of primary cultured rat Schwann cells. Proteome Sci, 2012, 10(1): 20.
|
28. |
Fong CY, Gauthaman K, Cheyyatraivendran S, et al. Human umbilicalcord Wharton’s jelly stem cells and its conditioned medium support hematopoietic stem cells expansion ex vivo. J Cell Biochem, 2012, 113(2): 658-668.
|
29. |
Orbay H, Uysal AC, Hyakusoku H, et al. Differentiated and undifferentiated adipose-derived stem cells improve function in rats with peripheral nerve gaps. J Plast Reconstr Aes, 2012, 65(5): 657-664.
|
30. |
施剑明, 牛力, 杜桂花, 等. 骨髓间充质干细胞治疗周围神经损伤的研究进展. 中国矫形外科杂志, 2014, 22(12): 1081-1085.
|
31. |
Lavasani M, Thompson SD, Pollett JB, et al. Human muscle-derived stem/progenitor cells promote functional murine peripheral nerve regeneration. J Clin Invest, 2014, 124(4): 1745-1756.
|
32. |
Martens W, Sanen K, Georgiou M, et al. Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro. Faseb J, 2014, 28(4): 1634-1643.
|
33. |
朱玉梅, 冯世庆. 人脐带间充质干细胞和大鼠激活态雪旺氏细胞联合培养的实验研究. 天津医药, 2012, 40(3): 251-253.
|
34. |
Yang L, Fang J, Liao D, et al. Schwann cells differentiated from adipose-derived stem cells for the treatment of brain contusion. Mol Med Rep, 2014, 9(2): 567-573.
|
35. |
Gao S, Zheng Y, Cai Q, et al. Different methods for inducting adipose-derived stem cells to differentiate into Schwann-like cells. Arch Med Sci, 2015, 11(4): 886-892.
|
36. |
Quan H, Wu X, Tian Y, et al. Overexpression of CDK5 in neural stem cells facilitates maturation of embryonic neurocytes derived from rats in vitro. Cell Biochem Biophys, 2014, 69(3): 445-453.
|
37. |
付秀美, 杨振江, 王荣良, 等. 大鼠脂肪源性干细胞来源的施万样细胞的增殖能力. 吉林大学学报 (医学版), 2017, 43(1): 36-41.
|
38. |
买霞, 陈小义, 杨丽颖, 等. bFGF 通过上调 ERK 表达诱导 BMSCs 向神经胶质样细胞分化. 解剖科学进展, 2012, 18(6): 541-544, 548.
|
39. |
Zhao Y, Jiang H, Liu XW, et al. Erratum to: Neurogenic differentiation from adipose-derived stem cells and application for autologous transplantation in spinal cord injury. Cell Tissue Bank, 2015, 16(4): 649.
|
40. |
Zhu H, Yang A, Du J, et al. Basic fibroblast growth factor is a key factor that induces bone marrow mesenchymal stem cells towards cells with Schwann cell phenotype. Neurosci Lett, 2014, 559: 82-87.
|
41. |
Nawa H, Sotoyman H, Iwakura Y, et al. Neuropathologic implication of peripheral neuregulin-1 and EGF signals in dopaminergic dysfunction and behavioral deficits relevant to schizophrenia: their target cells and time window. Biomed Res Int, 2014: 697935.
|
42. |
周青, 王冬芽, 刘星. Heregulin 和 VEGF 在结肠癌组织中的表达及其临床意义. 中国老年学杂志, 2014, 22(11): 6289-6291.
|
43. |
Barrenschee M, Lange C, Cossais F, et al. Expression and function of Neuregulin 1 and its signaling system ERBB2/3 in the enteric nervous system. Front Cell Neurosci, 2015, 9: 360.
|