1. |
Grande DA, Schwartz JA, Brandel E, et al. Articular Cartilage Repair: Where We Have Been, Where We Are Now, and Where We Are Headed. Cartilage, 2013, 4(4): 281-285.
|
2. |
裴福兴. 中国髋、膝关节置换的现状及展望. 中国骨与关节杂志, 2012, 1(1): 4-8.
|
3. |
Lee CH, Cook JL, Mendelson A, et al. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet, 2010, 376(9739): 440-448.
|
4. |
Yao Q, Wei B, Liu N, et al. Chondrogenic regeneration using bone marrow clots and a porous polycaprolactone-hydroxyapatite scaffold by three-dimensional printing. Tissue Eng Part A, 2015, 21(7-8): 1388-1397.
|
5. |
Poh CK, Shi Z, Lim TY, et al. The effect of VEGF functionalization of titanium on endothelial cells in vitro. Biomaterials, 2010, 31(7): 1578-1585.
|
6. |
Park K, Huang J, Azar F, et al. Scaffold-free, engineered porcine cartilage construct for cartilage defect repair in vitro and in vivo study. Artif Organs, 2006, 30(8): 586-596.
|
7. |
Steadman JR, Rodkey WG, Briggs KK. Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes. J Knee Surg, 2002, 15(3): 170-176.
|
8. |
Li WJ, Tuli R, Okafor C, et al. A three dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials, 2005, 26(6): 599-609.
|
9. |
Lee M, Wu BM. Recent advances in 3D printing of tissue engineering scaffolds. Methods Mol Biol, 2012, 868: 257-267.
|
10. |
吴天琦, 杨春喜. 可用于骨修复的 3D 打印多孔支架研究进展. 中国修复重建外科杂志, 2016, 30(4): 509-513.
|
11. |
Oh SH, Park IK, Kim JM, et al. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials, 2007, 28(9): 1664-1671.
|
12. |
Hardingham T, Tew S, Murdoch A. Tissue engineering: chondrocytes and cartilage. Arthritis Res, 2002, 4 Suppl 3: S63-68.
|
13. |
Heng BC, Cao T, Lee EH. Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells, 2004, 22(7): 1152-1167.
|
14. |
Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater, 2009, 8(6): 457-470.
|
15. |
Sharon JL, Puleo DA. Immobilization of glycoproteins, such as VEGF, on biodegradable substrates. Acta Biomater, 2008, 4(4): 1016-1023.
|
16. |
Lee YB, Shin YM, Lee JH, et al. Polydopamine-mediated immobilization of multiple bioactive molecules for the development of functional vascular graft materials. Biomaterials, 2012, 33(33): 8343-8352.
|
17. |
Poh CK, Shi Z, Lim TY, et al. The effect of VEGF functionalization of titanium on endothelial cells in vitro. Biomaterials, 2010, 31(7): 1578-1585.
|
18. |
Lai M, Cai K, Zhao L, et al. Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules, 2011, 12(4): 1097-1105.
|
19. |
Chien CY, Tsai WB. Poly (dopamine)-assisted immobilization of Arg-Gly-Asp peptides, hydroxyapatite, and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells. ACS Appl Mater Interfaces, 2013, 5(15): 6975-6983.
|
20. |
Kim SE, Yun YP, Shim KS, et al. Effect of lactoferrin-impregnated porous poly (lactide-co-glycolide) (PLGA) microspheres on osteogenic differentiation of rabbit adipose-derived stem cells (rADSCs). Colloids Surf B Biointerfaces, 2014, 122: 457-464.
|
21. |
Haeshin L, Dellatore SM, Miller WM, et al. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318(5849): 426-430.
|
22. |
Hotten GC, Matsumoto T, Kimura M, et al. Recombinant human growth/differentiation factor 5 stimulates mesenchyme aggregation and chondrogenesis responsible for the skeletal development of limbs. Growth Factors, 1996, 13(1-2): 65-74.
|
23. |
Enochson L, Stenberg J, Brittberg M, et al. GDF5 reduces MMP13 expression in human chondrocytes via DKK1 mediated canonical Wnt signaling inhibition. Osteoarthritis Cartilage, 2014, 22(4): 566-577.
|