- Department of Cervicofacial Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100144, P.R.China;
Citation: LIN Yanxian, SONG Weiming. Progress of monitoring methods and preventions of disorder of blood supplying of expanded flaps. Chinese Journal of Reparative and Reconstructive Surgery, 2018, 32(1): 118-124. doi: 10.7507/1002-1892.201708056 Copy
1. | 王炜. 整形外科学. 杭州: 浙江科学技术出版社, 1999: 245-249. |
2. | Khatri N, Zhang S, Kale SS. Current techniques for postoperative monitoring of microvascular free flaps. J Wound Ostomy Continence Nurs, 2017, 44(2): 148-152. |
3. | Sagaidachnyi AA, Fomin AV, Usanov DA, et al. Thermography-based blood flow imaging in human skin of the hands and feet: a spectral filtering approach. Physiol Meas, 2017, 38(2): 272-288. |
4. | Hardwicke JT, Osmani O, Skillman JM. Detection of perforators using smartphone thermal imaging. Plast Reconstr Surg, 2016, 137(1): 39-41. |
5. | Just M, Chalopin C, Unger M, et al. Monitoring of microvascular free flaps following oropharyngeal reconstruction using infrared thermography: first clinical experiences. Eur Arch Otorhinolaryngol, 2016, 273(9): 2659-2667. |
6. | Lohman RF, Ozturk CN, Ozturk C, et al. An analysis of current techniques used for intraoperative flap evaluation. Ann Plast Surg, 2015, 75(6): 679-685. |
7. | Akita S, Mitsukawa N, Tokumoto H, et al. Regional oxygen saturation index: A novel criterion for free flap assessment using tissue oximetry. Plast Reconstr Surg, 2016, 138(3): 510e-518e. |
8. | Chen Y, Shen Z, Shao Z, et al. Free flap monitoring using near-infrared spectroscopy: A systemic review. Ann Plast Surg, 2016, 76(5): 590-597. |
9. | Koolen PL, Vargas CR, Ho OA, et al. Does increased experience with tissue oximetry monitoring in microsurgical breast reconstruction lead to decreased flap loss? The learning effect. Plast Reconstr Surg, 2016, 137(4): 1093-1101. |
10. | Röjdmark J, Blomqvist L, Malm M, et al. Metabolism in myocutaneous flaps studied by in situ microdialysis. Scand J Plast Reconstr Surg Hand Surg, 1998, 32(1): 27-34. |
11. | Frost MW, Niumsawatt V, Rozen WM, et al. Direct comparison of postoperative monitoring of free flaps with microdialysis, implantable cook-swartz Doppler probe, and clinical monitoring in 20 consecutive patients. Microsurgery, 2015, 35(4): 262-271. |
12. | Tollan CJ, MacFarlane N, MacKay IR. Microdialysis as a method of investigating factors controlling microcirculation following free flap transfer. Plast Reconstr Surg, 2015, 136(4 Suppl): 70-71. |
13. | Ioannidis S, Spyropoulou GA, Sadigh P, et al. Pedicled free-style perforator flaps for trunk reconstruction: a reliable method. Plast Reconstr Surg, 2015, 135(2): 602-609. |
14. | Bellamy JL, Mundinger GS, Flores JM, et al. Do adjunctive flap-monitoring technologies impact clinical decision making? An analysis of microsurgeon preferences and behavior by body region. Plast Reconstr Surg, 2015, 135(3): 883-892. |
15. | Nanno M, Kodera N, Tomori Y, et al. Color Doppler ultrasound assessment for identifying perforator arteries of the second dorsal metacarpal flap. J Orthop Surg (Hong Kong), 2017, 25(1): 2309499016684744. |
16. | Kim JT, Ho SY, Kim YH. A chimaeric-pattern flap design for implantable Doppler surrogate monitoring: a novel placement technique. J Plast Reconstr Aesthet Surg, 2014, 67(2): 190-197. |
17. | Chang EI, Ibrahim A, Zhang H, et al. Deciphering the Sensitivity and Specificity of the Implantable Doppler Probe in Free Flap Monitoring. Plast Reconstr Surg, 2016, 137(3): 971-976. |
18. | Rothfuss MA, Unadkat JV, Gimbel ML, et al. Totally Implantable Wireless Ultrasonic Doppler Blood Flowmeters: Toward Accurate Miniaturized Chronic Monitors. Ultrasound Med Biol, 2017, 43(3): 561-578. |
19. | Rothenberger J, Amr A, Schaller HE, et al. Evaluation of a non-invasive monitoring method for free flap breast reconstruction using laser doppler flowmetrie and tissue spectrophotometry. Microsurgery, 2013, 33(5): 350-357. |
20. | Kolbenschlag J, Sogorski A, Kapalschinski N, et al. Remote Ischemic Conditioning Improves Blood Flow and Oxygen Saturation in Pedicled and Free Surgical Flaps. Plast Reconstr Surg, 2016, 138(5): 1089-1097. |
21. | Holm C, Dornseifer U, Sturtz G, et al. Sensitivity and specificity of ICG angiography in free flap reexploration. J Reconstr Microsurg, 2010, 26(5): 311-316. |
22. | Lohman RF, Ozturk CN, Ozturk C, et al. An analysis of current techniques used for intraoperative flap evaluation. Ann Plast Surg, 2015, 75(6): 679-685. |
23. | Diep GK, Hui JY, Marmor S, et al. Postmastectomy reconstruction outcomes after intraoperative evaluation with indocyanine green angiography versus clinical assessment. Ann Surg Oncol, 2016, 23(12): 4080-4085. |
24. | Hitier M, Cracowski JL, Hamou C, et al. Indocyanine green fluorescence angiography for free flap monitoring: A pilot study. J Craniomaxillofac Surg, 2016, 44(11): 1833-1841. |
25. | Lohman RF, Ozturk CN, Ozturk C, et al. An analysis of current techniques used for intraoperative flap evaluation. Ann Plast Surg, 2015, 75(6): 679-685. |
26. | Nagata T, Masumoto K, Uchiyama Y, et al. Improved technique for evaluating oral free flaps by pinprick testing assisted by indocyanine green near-infrared fluorescence angiography. J Craniomaxillofac Surg, 2014, 42(7): 1112-1116. |
27. | Suchyta M, Mardini S. Innovations and future directions in head and neck microsurgical reconstruction. Clin Plast Surg, 2017, 44(2): 325-344. |
28. | Ludolph I, Arkudas A, Schmitz M, et al. Cracking the perfusion code?: Laser-assisted Indocyanine Green angiography and combined laser Doppler spectrophotometry for intraoperative evaluation of tissue perfusion in autologous breast reconstruction with DIEP or ms-TRAM flaps. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2016, 69(10): 1382-1388. |
29. | Mcke T, Fichter AM, Schmidt LH, et al. Indocyanine green videoangiography-assisted prediction of flap necrosis in the rat epigastric flap using the flow® 800 tool. Microsurgery, 2017, 37(3): 235-242. |
30. | 张子阳, 张文夺, 魏在荣, 等. 数字减影血管造影在胫后动脉穿支皮瓣修复足踝部创面中的应用研究. 中国修复重建外杂志, 2015, 29(9): 1109-1112. |
31. | 唐举玉, 卿黎明, 贺继强, 等. 数字化技术辅助旋股外侧动脉降支分叶穿支皮瓣设计的初步应用. 中华显微外科杂志, 2016, 39(2): 123-126. |
32. | 张子阳, 魏在荣, 张文夺, 等. 数字减影血管造影术前导航指导切取胫前动脉穿支皮瓣修复足踝部创面 13 例. 中华烧伤杂志, 2016, 32(10): 620-622. |
33. | 徐业凯, 袁斯明, 郭遥, 等. 应用数字减影血管造影术指导皮瓣选择修复严重手外伤创面. 组织工程与重建外科杂志, 2016, 12(6): 357-359. |
34. | Mohan AT, Saint-Cyr M. Advances in imaging technologies for planning breast reconstruction. Gland Surg, 2016, 5(2): 242-254. |
35. | 杨克勤, 莫勇军, 谭海涛, 等. CTA 技术在小腿穿支皮瓣修复踝周组织缺损中的应用. 中华显微外科杂志, 2017, 40(2): 168-171. |
36. | Maricevich MA, Bykowski MR, Schusterman MA 2nd, et al. Lateral thigh perforator flap for breast reconstruction: Computed tomographic angiography analysis and clinical series. J Plast Reconstr Aesthet Surg, 2017, 70(5): 577-584. |
37. | Hummelink S, Verhulst AC, Maal TJJ, et al. An innovative method of planning and displaying flap volume in DIEP flap breast reconstructions. J Plast Reconstr Aesthet Surg, 2017, 70(7): 871-875. |
38. | Ono S, Hayashi H, Ohi H, et al. Imaging studies for preoperative planning of perforator flaps: An overview. Clin Plast Surg, 2017, 44(1): 21-30. |
39. | 段家章, 何晓清, 徐永清. 股前外侧皮瓣血管解剖学及术前皮瓣设计技术研究进展. 中国修复重建外科杂志, 2016, 30(7): 909-914. |
40. | Gryseleyn R, Schlund M, Pigache P, et al. Influence of preoperative imaging on fibula free flap harvesting. J Stomatol Oral Maxillofac Surg, 2017, 118(5): 265-270. |
41. | Swanson EW, Hsu YC, Cheng HT. CTA and contrast-enhanced MRA are equally accurate for localizing deep inferior epigastric perforator flap arteries: a systematic review. J Plast Reconstr Aesthet Surg, 2015, 68(4): 580-581. |
42. | Agochukwu NB, Huang C, Zhao M, et al. A novel noncontact diffuse correlation spectroscopy device for assessing blood flow in mastectomy skin flaps: A prospective study in patients undergoing prosthesis-based reconstruction. Plast Reconstr Surg, 2017, 140(1): 26-31. |
43. | 常谨, 刘国林, 刘硕, 等. VEGF 在不同皮肤扩张方式中表达的意义. 中国美容医学, 2012, 21(13): 1770-1773. |
44. | Hu X, Zeng G, Zhou Y, et al. Reconstruction of skin defects on the mid and lower face using expanded flap in the neck. J Craniofac Surg, 2017, 28(2): e137-e141. |
45. | Omranifard M, Heidari M, Farajzadegan Z. The volume of fluid injected into the tissue expander and the tissue expansion. J Res Med Sci, 2014, 19(12): 1163-1166. |
46. | Zhu H, Xie Y, Xie F, et al. Prevention of necrosis of adjacent expanded flaps by surgical delay. Ann Plast Surg, 2014, 73(5): 525-530. |
47. | Hamilton K, Wolfswinkel EM, Weathers WM, et al. The delay phenomenon: a compilation of knowledge across specialties. Craniomaxillofac Trauma Reconstr, 2014, 7(2): 112-118. |
48. | 姚媛媛, 张金明, 梁伟强, 等. 埋线法结扎周边血管预防扩张皮瓣静脉淤血的疗效观察. 中国修复重建外科杂志, 2015, 29(6): 789-791. |
49. | Liu L, Zhang C, Tong H, et al. Silk Ligation Delay for the Random Pattern Flap. J Craniofac Surg, 2017, 28(1): 104-107. |
50. | 赵宇辉, 李莉, 王阳. 蒂部维持扩张法对远位扩张皮瓣血运影响的临床观察. 中华创伤杂志, 2014, 30(8): 795-797. |
51. | 薛文丽, 宋维铭, 王佳琦, 等. 扩张皮瓣转移术后血运障碍的原因分析与处理. 中国美容整形外科杂志, 2013, 24(5): 300-302. |
52. | Cheng Z, Wu W, Hu P, et al. Distally based saphenous nerve-greater saphenous venofasciocutaneous flap for reconstruction of soft tissue defects in distal lower leg. Ann Plast Surg, 2016, 77(1): 102-105. |
53. | Herlin C, Bertheuil N, Bekara F, et al. Leech therapy in flap salvage: Systematic review and practical recommendations. Ann Chir Plast Esthet, 2017, 62(2): e1-e13. |
54. | Mumcuoglu KY. Recommendations for the use of leeches in reconstructive plastic surgery. Evid Based Complement Alternat Med, 2014, 2014: 205929. |
55. | Fichter AM, Ritschl LM, Robitzky LK, et al. Impact of different antithrombotics on the microcirculation and viability of perforator-based ischaemic skin flaps in a small animal model. Sci Rep, 2016, 6: 35833. |
56. | Peng L, Pan X, Yin G. Natural hirudin increases rat flap viability by anti-inflammation via PARs/p38/NF-κB pathway. Biomed Res Int, 2015, 2015: 597264. |
57. | Pan XY, Peng L, Han ZQ, et al. Hirudin promotes angiogenesis by modulating the cross-talk between p38 MAPK and ERK in rat ischemic skin flap tissue. Tissue Cell, 2015, 47(3): 301-310. |
58. | Gould LJ, May T. The science of hyperbaric oxygen for flaps and grafts. Surg Technol Int, 2016, 28: 65-72. |
59. | Ju Z, Wei J, Guan H, et al. Effects of hyperbaric oxygen therapy on rapid tissue expansion in rabbits. J Plast Reconstr Aesthet Surg, 2012, 65(9): 1252-1258. |
60. | 张栋益, 康深松, 张正文, 等. 氧自由基清除剂提高大鼠扩张皮瓣成活率的作用及血管保护机制. 中华实验外科杂志, 2016, 33(5): 1207-1209. |
61. | Deheng C, Kailiang Z, Weidong W, et al. Salidroside promotes random skin flap survival in rats by enhancing angiogenesis and inhibiting apoptosis. J Reconstr Microsurg, 2016, 32(8): 580-586. |
62. | Liang X, Huang X, Zhou Y, et al. Mechanical stretching promotes skin tissue regeneration via enhancing mesenchymal stem cell homing and transdifferentiation. Stem Cells Transl Med, 2016, 5(7): 960-969. |
63. | Kanayama K, Mineda K, Mashiko T, et al. Blood congestion can be rescued by hemodilution in a random-pattern skin flap. Plast Reconstr Surg, 2017, 139(2): 365-374. |
- 1. 王炜. 整形外科学. 杭州: 浙江科学技术出版社, 1999: 245-249.
- 2. Khatri N, Zhang S, Kale SS. Current techniques for postoperative monitoring of microvascular free flaps. J Wound Ostomy Continence Nurs, 2017, 44(2): 148-152.
- 3. Sagaidachnyi AA, Fomin AV, Usanov DA, et al. Thermography-based blood flow imaging in human skin of the hands and feet: a spectral filtering approach. Physiol Meas, 2017, 38(2): 272-288.
- 4. Hardwicke JT, Osmani O, Skillman JM. Detection of perforators using smartphone thermal imaging. Plast Reconstr Surg, 2016, 137(1): 39-41.
- 5. Just M, Chalopin C, Unger M, et al. Monitoring of microvascular free flaps following oropharyngeal reconstruction using infrared thermography: first clinical experiences. Eur Arch Otorhinolaryngol, 2016, 273(9): 2659-2667.
- 6. Lohman RF, Ozturk CN, Ozturk C, et al. An analysis of current techniques used for intraoperative flap evaluation. Ann Plast Surg, 2015, 75(6): 679-685.
- 7. Akita S, Mitsukawa N, Tokumoto H, et al. Regional oxygen saturation index: A novel criterion for free flap assessment using tissue oximetry. Plast Reconstr Surg, 2016, 138(3): 510e-518e.
- 8. Chen Y, Shen Z, Shao Z, et al. Free flap monitoring using near-infrared spectroscopy: A systemic review. Ann Plast Surg, 2016, 76(5): 590-597.
- 9. Koolen PL, Vargas CR, Ho OA, et al. Does increased experience with tissue oximetry monitoring in microsurgical breast reconstruction lead to decreased flap loss? The learning effect. Plast Reconstr Surg, 2016, 137(4): 1093-1101.
- 10. Röjdmark J, Blomqvist L, Malm M, et al. Metabolism in myocutaneous flaps studied by in situ microdialysis. Scand J Plast Reconstr Surg Hand Surg, 1998, 32(1): 27-34.
- 11. Frost MW, Niumsawatt V, Rozen WM, et al. Direct comparison of postoperative monitoring of free flaps with microdialysis, implantable cook-swartz Doppler probe, and clinical monitoring in 20 consecutive patients. Microsurgery, 2015, 35(4): 262-271.
- 12. Tollan CJ, MacFarlane N, MacKay IR. Microdialysis as a method of investigating factors controlling microcirculation following free flap transfer. Plast Reconstr Surg, 2015, 136(4 Suppl): 70-71.
- 13. Ioannidis S, Spyropoulou GA, Sadigh P, et al. Pedicled free-style perforator flaps for trunk reconstruction: a reliable method. Plast Reconstr Surg, 2015, 135(2): 602-609.
- 14. Bellamy JL, Mundinger GS, Flores JM, et al. Do adjunctive flap-monitoring technologies impact clinical decision making? An analysis of microsurgeon preferences and behavior by body region. Plast Reconstr Surg, 2015, 135(3): 883-892.
- 15. Nanno M, Kodera N, Tomori Y, et al. Color Doppler ultrasound assessment for identifying perforator arteries of the second dorsal metacarpal flap. J Orthop Surg (Hong Kong), 2017, 25(1): 2309499016684744.
- 16. Kim JT, Ho SY, Kim YH. A chimaeric-pattern flap design for implantable Doppler surrogate monitoring: a novel placement technique. J Plast Reconstr Aesthet Surg, 2014, 67(2): 190-197.
- 17. Chang EI, Ibrahim A, Zhang H, et al. Deciphering the Sensitivity and Specificity of the Implantable Doppler Probe in Free Flap Monitoring. Plast Reconstr Surg, 2016, 137(3): 971-976.
- 18. Rothfuss MA, Unadkat JV, Gimbel ML, et al. Totally Implantable Wireless Ultrasonic Doppler Blood Flowmeters: Toward Accurate Miniaturized Chronic Monitors. Ultrasound Med Biol, 2017, 43(3): 561-578.
- 19. Rothenberger J, Amr A, Schaller HE, et al. Evaluation of a non-invasive monitoring method for free flap breast reconstruction using laser doppler flowmetrie and tissue spectrophotometry. Microsurgery, 2013, 33(5): 350-357.
- 20. Kolbenschlag J, Sogorski A, Kapalschinski N, et al. Remote Ischemic Conditioning Improves Blood Flow and Oxygen Saturation in Pedicled and Free Surgical Flaps. Plast Reconstr Surg, 2016, 138(5): 1089-1097.
- 21. Holm C, Dornseifer U, Sturtz G, et al. Sensitivity and specificity of ICG angiography in free flap reexploration. J Reconstr Microsurg, 2010, 26(5): 311-316.
- 22. Lohman RF, Ozturk CN, Ozturk C, et al. An analysis of current techniques used for intraoperative flap evaluation. Ann Plast Surg, 2015, 75(6): 679-685.
- 23. Diep GK, Hui JY, Marmor S, et al. Postmastectomy reconstruction outcomes after intraoperative evaluation with indocyanine green angiography versus clinical assessment. Ann Surg Oncol, 2016, 23(12): 4080-4085.
- 24. Hitier M, Cracowski JL, Hamou C, et al. Indocyanine green fluorescence angiography for free flap monitoring: A pilot study. J Craniomaxillofac Surg, 2016, 44(11): 1833-1841.
- 25. Lohman RF, Ozturk CN, Ozturk C, et al. An analysis of current techniques used for intraoperative flap evaluation. Ann Plast Surg, 2015, 75(6): 679-685.
- 26. Nagata T, Masumoto K, Uchiyama Y, et al. Improved technique for evaluating oral free flaps by pinprick testing assisted by indocyanine green near-infrared fluorescence angiography. J Craniomaxillofac Surg, 2014, 42(7): 1112-1116.
- 27. Suchyta M, Mardini S. Innovations and future directions in head and neck microsurgical reconstruction. Clin Plast Surg, 2017, 44(2): 325-344.
- 28. Ludolph I, Arkudas A, Schmitz M, et al. Cracking the perfusion code?: Laser-assisted Indocyanine Green angiography and combined laser Doppler spectrophotometry for intraoperative evaluation of tissue perfusion in autologous breast reconstruction with DIEP or ms-TRAM flaps. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2016, 69(10): 1382-1388.
- 29. Mcke T, Fichter AM, Schmidt LH, et al. Indocyanine green videoangiography-assisted prediction of flap necrosis in the rat epigastric flap using the flow® 800 tool. Microsurgery, 2017, 37(3): 235-242.
- 30. 张子阳, 张文夺, 魏在荣, 等. 数字减影血管造影在胫后动脉穿支皮瓣修复足踝部创面中的应用研究. 中国修复重建外杂志, 2015, 29(9): 1109-1112.
- 31. 唐举玉, 卿黎明, 贺继强, 等. 数字化技术辅助旋股外侧动脉降支分叶穿支皮瓣设计的初步应用. 中华显微外科杂志, 2016, 39(2): 123-126.
- 32. 张子阳, 魏在荣, 张文夺, 等. 数字减影血管造影术前导航指导切取胫前动脉穿支皮瓣修复足踝部创面 13 例. 中华烧伤杂志, 2016, 32(10): 620-622.
- 33. 徐业凯, 袁斯明, 郭遥, 等. 应用数字减影血管造影术指导皮瓣选择修复严重手外伤创面. 组织工程与重建外科杂志, 2016, 12(6): 357-359.
- 34. Mohan AT, Saint-Cyr M. Advances in imaging technologies for planning breast reconstruction. Gland Surg, 2016, 5(2): 242-254.
- 35. 杨克勤, 莫勇军, 谭海涛, 等. CTA 技术在小腿穿支皮瓣修复踝周组织缺损中的应用. 中华显微外科杂志, 2017, 40(2): 168-171.
- 36. Maricevich MA, Bykowski MR, Schusterman MA 2nd, et al. Lateral thigh perforator flap for breast reconstruction: Computed tomographic angiography analysis and clinical series. J Plast Reconstr Aesthet Surg, 2017, 70(5): 577-584.
- 37. Hummelink S, Verhulst AC, Maal TJJ, et al. An innovative method of planning and displaying flap volume in DIEP flap breast reconstructions. J Plast Reconstr Aesthet Surg, 2017, 70(7): 871-875.
- 38. Ono S, Hayashi H, Ohi H, et al. Imaging studies for preoperative planning of perforator flaps: An overview. Clin Plast Surg, 2017, 44(1): 21-30.
- 39. 段家章, 何晓清, 徐永清. 股前外侧皮瓣血管解剖学及术前皮瓣设计技术研究进展. 中国修复重建外科杂志, 2016, 30(7): 909-914.
- 40. Gryseleyn R, Schlund M, Pigache P, et al. Influence of preoperative imaging on fibula free flap harvesting. J Stomatol Oral Maxillofac Surg, 2017, 118(5): 265-270.
- 41. Swanson EW, Hsu YC, Cheng HT. CTA and contrast-enhanced MRA are equally accurate for localizing deep inferior epigastric perforator flap arteries: a systematic review. J Plast Reconstr Aesthet Surg, 2015, 68(4): 580-581.
- 42. Agochukwu NB, Huang C, Zhao M, et al. A novel noncontact diffuse correlation spectroscopy device for assessing blood flow in mastectomy skin flaps: A prospective study in patients undergoing prosthesis-based reconstruction. Plast Reconstr Surg, 2017, 140(1): 26-31.
- 43. 常谨, 刘国林, 刘硕, 等. VEGF 在不同皮肤扩张方式中表达的意义. 中国美容医学, 2012, 21(13): 1770-1773.
- 44. Hu X, Zeng G, Zhou Y, et al. Reconstruction of skin defects on the mid and lower face using expanded flap in the neck. J Craniofac Surg, 2017, 28(2): e137-e141.
- 45. Omranifard M, Heidari M, Farajzadegan Z. The volume of fluid injected into the tissue expander and the tissue expansion. J Res Med Sci, 2014, 19(12): 1163-1166.
- 46. Zhu H, Xie Y, Xie F, et al. Prevention of necrosis of adjacent expanded flaps by surgical delay. Ann Plast Surg, 2014, 73(5): 525-530.
- 47. Hamilton K, Wolfswinkel EM, Weathers WM, et al. The delay phenomenon: a compilation of knowledge across specialties. Craniomaxillofac Trauma Reconstr, 2014, 7(2): 112-118.
- 48. 姚媛媛, 张金明, 梁伟强, 等. 埋线法结扎周边血管预防扩张皮瓣静脉淤血的疗效观察. 中国修复重建外科杂志, 2015, 29(6): 789-791.
- 49. Liu L, Zhang C, Tong H, et al. Silk Ligation Delay for the Random Pattern Flap. J Craniofac Surg, 2017, 28(1): 104-107.
- 50. 赵宇辉, 李莉, 王阳. 蒂部维持扩张法对远位扩张皮瓣血运影响的临床观察. 中华创伤杂志, 2014, 30(8): 795-797.
- 51. 薛文丽, 宋维铭, 王佳琦, 等. 扩张皮瓣转移术后血运障碍的原因分析与处理. 中国美容整形外科杂志, 2013, 24(5): 300-302.
- 52. Cheng Z, Wu W, Hu P, et al. Distally based saphenous nerve-greater saphenous venofasciocutaneous flap for reconstruction of soft tissue defects in distal lower leg. Ann Plast Surg, 2016, 77(1): 102-105.
- 53. Herlin C, Bertheuil N, Bekara F, et al. Leech therapy in flap salvage: Systematic review and practical recommendations. Ann Chir Plast Esthet, 2017, 62(2): e1-e13.
- 54. Mumcuoglu KY. Recommendations for the use of leeches in reconstructive plastic surgery. Evid Based Complement Alternat Med, 2014, 2014: 205929.
- 55. Fichter AM, Ritschl LM, Robitzky LK, et al. Impact of different antithrombotics on the microcirculation and viability of perforator-based ischaemic skin flaps in a small animal model. Sci Rep, 2016, 6: 35833.
- 56. Peng L, Pan X, Yin G. Natural hirudin increases rat flap viability by anti-inflammation via PARs/p38/NF-κB pathway. Biomed Res Int, 2015, 2015: 597264.
- 57. Pan XY, Peng L, Han ZQ, et al. Hirudin promotes angiogenesis by modulating the cross-talk between p38 MAPK and ERK in rat ischemic skin flap tissue. Tissue Cell, 2015, 47(3): 301-310.
- 58. Gould LJ, May T. The science of hyperbaric oxygen for flaps and grafts. Surg Technol Int, 2016, 28: 65-72.
- 59. Ju Z, Wei J, Guan H, et al. Effects of hyperbaric oxygen therapy on rapid tissue expansion in rabbits. J Plast Reconstr Aesthet Surg, 2012, 65(9): 1252-1258.
- 60. 张栋益, 康深松, 张正文, 等. 氧自由基清除剂提高大鼠扩张皮瓣成活率的作用及血管保护机制. 中华实验外科杂志, 2016, 33(5): 1207-1209.
- 61. Deheng C, Kailiang Z, Weidong W, et al. Salidroside promotes random skin flap survival in rats by enhancing angiogenesis and inhibiting apoptosis. J Reconstr Microsurg, 2016, 32(8): 580-586.
- 62. Liang X, Huang X, Zhou Y, et al. Mechanical stretching promotes skin tissue regeneration via enhancing mesenchymal stem cell homing and transdifferentiation. Stem Cells Transl Med, 2016, 5(7): 960-969.
- 63. Kanayama K, Mineda K, Mashiko T, et al. Blood congestion can be rescued by hemodilution in a random-pattern skin flap. Plast Reconstr Surg, 2017, 139(2): 365-374.
-
Previous Article
Research progress of surgical treatment of thoracolumbar spinal tuberculosis -
Next Article
3-D 打印技术辅助人工全髋关节置换术治疗 Crowe Ⅳ 型髋关节发育不良合并股骨近段畸形一例