1. |
Schmalzigaug R, Phee H, Davidson CE, et al. Differential expression of the ARF GAP genes GIT1 and GIT2 in mouse tissues. J Histochem Cytochem, 2007, 55(10): 1039-1048.
|
2. |
Brown MC, Cary LA, Jamieson JS, et al. Src and FAK kinases cooperate to phosphorylate paxillin kinase linker, stimulate its focal adhesion localization, and regulate cell spreading and protrusiveness. Mol Biol Cell, 2005, 16(9): 4316-4328.
|
3. |
Zhang S, Hisatsune C, Matsu-Ura T, et al. G-protein-coupled receptor kinase-interacting proteins inhibit apoptosis by inositol 1, 4, 5-triphosphate receptor-mediated Ca2+ signal regulation. J Biol Chem, 2009, 284(42): 29158-29169.
|
4. |
Yin G, Sheu TJ, Menon P, et al. Impaired angiogenesis during fracture healing in GPCR kinase 2 interacting protein-1(GIT1) knock out mice. PLoS One, 2014, 9(2): e89127.
|
5. |
Alam A, Blanc I, Gueguen-Dorbes G, et al. SAR131675, a potent and selective VEGFR-3-TK inhibitor with antilymphangiogenic, antitumoral, and antimetastatic activities. Mol Cancer Ther, 2012, 11(8): 1637-1649.
|
6. |
Pang J, Hoefen R, Pryhuber GS, et al.GIT1 is required for pulmonary vascular development. Circulation, 2009, 119(11): 1524-1532.
|
7. |
Robciuc MR, Kivelä R, Williams IM, et al. VEGFB/VEGFR1-induced expansion of adipose vasculature counteracts obesity and related metabolic complications. Cell Metab, 2016, 23(4): 712-724.
|
8. |
Pan CC, Shah N, Kumar S, et al. Angiostatic actions of capsicodendrin through selective inhibition of VEGFR2-mediated AKT signaling and disregulated autophagy. Oncotarget, 2016, 8(8): 12675-12685.
|
9. |
Kalitin NN, Karamysheva AF. RARalpha mediates all-trans-retinoic acid-induced VEGF-C, VEGF-D, and VEGFR3 expression in lung cancer cells. Cell Biol Int, 2016, 40(4): 456-464.
|
10. |
Saj A, Arziman Z, Stempfle D, et al. A combined ex vivo and in vivo RNAi screen for notch regulators in Drosophila reveals an extensive notch interaction network. Dev Cell, 2010, 18(5): 862-876.
|
11. |
Heitzler P. Biodiversity and noncanonical Notch signaling. Curr Top Dev Biol, 2010, 92: 457-481.
|
12. |
Tammela T, Zarkada G, Wallgard E, et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature, 2008, 454(7204): 656-660.
|
13. |
Kume T. Novel insights into the differential functions of Notch ligands in vascular formation. J Angiogenes Res, 2009, 1: 8.
|
14. |
Gale NW, Dominguez MG, Noguera I, et al. Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci U S A, 2004, 101(45): 15949-15954.
|
15. |
Limbourg FP, Takeshita K, Radtke F, et al. Essential role of endothelial Notch1 in angiogenesis. Circulation, 2005, 111(14): 1826-1832.
|
16. |
Siekmann AF, Lawson ND. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature, 2007, 445(7129): 781-784.
|
17. |
Thurston G, Noguera-Troise I, Yancopoulos GD. The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nat Rev Cancer, 2007, 7(5): 327-331.
|
18. |
Hayashi H, Kume T. Foxc2 transcription factor as a regulator of angiogenesis via induction of integrin beta3 expression. Cell Adhesion Migr, 2009, 3(1): 24-26.
|
19. |
Benedito R, Rocha SF, Woeste M, et al. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signaling. Nature, 2012, 484(7392): 110-114.
|