1. |
Brown WE, Chow LC. A new calcium phosphate water setting cement//Brown PW. Cements research progress. Westerville, OH: American Ceramic Society, 1986: 352-379.
|
2. |
Costantino PD, Friedman CD, Jones K, et al. Experimental hydroxyapatite cement cranioplasty. Plast Reconstr Surg, 1992, 90(2): 174-191.
|
3. |
Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs, 2015, 13(3): 1133-1174.
|
4. |
Anitha A, Sowmya S, Sudheesh Kumar PT, et al. Chitin and chitosan in selected biomedical applications. Progress in Polymer Science, 2014, 39(9): 1644-1667.
|
5. |
Xu HH, Martin TA, Antonucci JM, et al. Ceramic whisker reinforcement of dental resin composites Dent Res, 1999, 78(2): 706-712.
|
6. |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663-676.
|
7. |
Yamanaka S. Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif, 2008, 41 Suppl 1: 51-56.
|
8. |
Jung Y, Bauer G, Nolta JA. Concise review: Induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells, 2012, 30(1): 42-47.
|
9. |
Xu HH, Quinn JB, Takagi S, et al. Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering. Biomaterials, 2004, 25(6): 1029-1037.
|
10. |
Carey LE, Xu HH, Simonjr CG Jr, et al. Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials, 2005, 26(24): 5002-5014.
|
11. |
Xu HH, Smith DT, Simon CG. Strong and bioactive composites containing nano-silica-fused whiskers for bone repair. Biomaterials, 2004, 25(19): 4615-4626.
|
12. |
Zhao L, Burguera EF, Xu HH, et al. Fatigue and human umbilical cord stem cell seeding characteristics of calcium phosphate-chitosan-biodegradable fiber scaffolds. Biomaterials, 2010, 31(5): 840-847.
|
13. |
Xu HH, Simon CG Jr. Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility. Biomaterials, 2005, 26(12): 1337-1348.
|
14. |
Zhao L, Weir MD, Xu HH. Human umbilical cord stem cell encapsulation in calcium phosphate scaffolds for bone engineering. Biomaterials, 2010, 31(14): 3848-3857.
|
15. |
Wang P, Liu X, Zhao L, et al. Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium. Acta Biomater, 2015, 18: 236-248.
|
16. |
Wang P, Song Y, Weir MD, et al. A self-setting iPSMSC-alginate-calcium phosphate paste for bone tissue engineering. Dental Materials, 2016, 32(2): 252-263.
|
17. |
Zhang J, Liu W, Schnitzler V, et al. Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties. Acta Biomater, 2014, 10(3): 1035-1049.
|
18. |
Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomater, 2013, 9(9): 8037-8045.
|
19. |
Wagoner Johnson AJ, Herschler BA. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater, 2011, 7(1): 16-30.
|
20. |
Krüger R, Groll J. Fiber reinforced calcium phosphate cements--On the way to degradable load bearing bone substitutes? Biomaterials, 2012, 33(25): 5887-5900.
|
21. |
Friedman CD, Costantino PD, Takagi S, et al. BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res, 1998, 43(4): 428-432.
|
22. |
Xu HH, Quinn JB, Takagi S, et al. Processing and properties of strong and non-rigid calcium phosphate cement. J Dent Res, 2002, 81(3): 219-224.
|
23. |
Wu F, Wei J, Guo H, et al. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration. Acta Biomater, 2008, 4(6): 1873-1884.
|
24. |
Broz JJ, Simske SJ, Corley WD, et al. Effects of deproteinization and ashing on site-specific properties of cortical bone. J Mater Sci Mater Med, 1997, 8(6): 395-401.
|
25. |
Eleazer CD, Jankauskas R. Mechanical and metabolic interactions in cortical bone development. Am J Phys Anthropol, 2016, 160(2): 317-333.
|
26. |
Rho JY, Tsui TY, Pharr GM. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials, 1997, 18(20): 1325-1330.
|
27. |
Ambard AJ, Mueninghoff L. Calcium Phosphate Cement: Review of Mechanical and Biological Properties. J Prosthodontics, 2006, 15(5): 321-328.
|
28. |
Turunen MJ, Prantner V, Jurvelin JS, et al. Composition and microarchitecture of human trabecular bone change with age and differ between anatomical locations. Bone, 2013, 54(1): 118-125.
|
29. |
Kim K, Dean D, Mikos AG, et al. Effect of initial cell seeding density on early osteogenic signal expression of rat bone marrow stromal cells cultured on cross-linked poly (propylene fumarate) disks. Biomacromolecules, 2009, 10(7): 1810-1817.
|
30. |
Hwang NS, Varghese S, Lee HJ, et al. In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc Natl Acad Sci U S A, 2008, 105(52): 20641-20646.
|