1. |
Wang XD, Hu W, Cao Y, et al. Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain, 2005, 128(8): 1897-1910.
|
2. |
Wang Y, Zhao Y, Sun C, et al. Chitosan degradation products promote nerve regeneration by stimulating Schwann cell proliferation via miR-27a/FOXO1 axis. Mol Neurobiol, 2016, 53(1): 28-39.
|
3. |
Gu J, Hu W, Deng A, et al. Surgical repair of a 30mm long human median nerve defect in the distal forearm by implantation of a chitosan-PGA nerve guidance conduit. J Tissue Eng Regen Med, 2012, 6(2): 163-168.
|
4. |
Jiao H, Yao J, Yang Y, et al. Chitosan/polyglycolic acid nerve grafts for axon regeneration from prolonged axotomized neurons to chronically denervated segments. Biomaterials, 2009, 30(28): 5004-5018.
|
5. |
焦海山, 姚健, 任艳玲, 等. 甲壳素神经导管修复大鼠坐骨神经 10 mm 缺损的实验研究. 中国生物医学工程学报, 2008, 27(4): 597-602.
|
6. |
陈颖, 任艳玲, 李奕, 等. 壳聚糖乙酰化甲壳素材料与许旺细胞的体外相容性. 中国组织工程研究与临床康复, 2008, 12(32): 6230-6234.
|
7. |
Nguyen HT, Sapp S, Wei C, et al. Electric field stimulation through a biodegradable polypyrrole-co-polycaprolactone substrate enhances neural cell growth. J Biomed Mater Res A, 2014, 102(8): 2554-2564.
|
8. |
Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater, 2014, 10(6): 2341-2353.
|
9. |
Guo B, Glavas L, Albertsson AC. Biodegradable and electrically conducting polymers for biomedical applications. Progress in Polymer Science, 2013, 38(9): 1263-1286.
|
10. |
Shi G, Rouabhia M, Wang Z, et al. A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials, 2004, 25(13): 2477-2488.
|
11. |
Guimard NK, Sessler JL, Schmidt CE. Towards a biocompatible, biodegradable copolymer incorporating electroactive oligothiophene units. Macromolecules, 2009, 42(2): 502-511.
|
12. |
Wan Y, Wu H, Wen D. Porous-conductive chitosan scaffolds for tissue engineering. I. Preparation and characterization. Macromol Biosci, 2004, 4(9): 882-890.
|
13. |
Yan F, Xue G, Zhou M. Preparation of electrically conducting polypyrrole in oil/water microemulsion. J Appl Polym Sci, 2000, 77: 135-140.
|
14. |
董炎明, 许聪义, 汪剑炜, 等. 红外光谱法测定 N-酰化壳聚糖的取代度. 中国科学 (B 辑), 2001, 31(2): 153-160.
|
15. |
Poletti Papi MA, Caetano FR, Bergamini MF, et al. Facile synthesis of a silver nanoparticles/polypyrrole nanocomposite for non-enzymatic glucose determination. Mater Sci Eng C Mater Biol Appl, 2017, 75: 88-94.
|
16. |
王爱勤. 甲壳素化学. 北京: 科学出版社, 2008: 226-227.
|
17. |
Freier T, Koh HS, Kazazian K, et al. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials, 2005, 26(29): 5872-5878.
|
18. |
Foster LJ, Ho S, Hook J, et al. Chitosan as a biomaterial: influence of degree of deacetylation on its physiochemical, material and biological properties. PLoS One, 2015, 10(8): e0135153.
|
19. |
Jang LK, Kim S, Seo J, et al. Facile and controllable electrochemical fabrication of cell-adhesive polypyrrole electrodes using pyrrole-RGD peptides. Biofabrication, 2017, 9(4): 045007.
|
20. |
Wang X, Gu X, Yuan C, et al. Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J Biomed Mater Res A, 2004, 68(3): 411-422.
|
21. |
Fahlgren A, Bratengeier C, Gelmi A, et al. Biocompatibility of polypyrrole with human primary osteoblasts and the effect of dopants. PLoS One, 2015, 10(7): e0134023.
|
22. |
Wan Y, Yu A, Wu H, et al. Porous-conductive chitosan scaffolds for tissue engineering Ⅱ. In vitro and in vivo degradation. J Mater Sci Mater Med, 2005, 16(11): 1017-1028.
|
23. |
熊敏剑, 李晓峰, 闵燕, 等. 不同脱乙酰度壳聚糖支架制备及降解性能评价. 生物医学工程学杂志, 2012, 29(1): 107-111.
|
24. |
Yang YM, Hu W, Wang XD, et al. The controlling biodegradation of chitosan fibers by N-acetylation in vitro and in vivo. J Mater Sci Mater Med, 2007, 18(11): 2117-2121.
|