1. |
Jiang Y, Wang X, Xia L, et al. A cohort study of diabetic patients and diabetic foot ulceration patients in China. Wound Repair Regen, 2015, 23(2): 222-230.
|
2. |
冉兴无, 郑月宏. 加强多学科协作, 提高糖尿病缺血性足溃疡的治愈率. 中华糖尿病杂志, 2016, 8(7): 385-387.
|
3. |
Saboo A, Rathnayake A, Vangaveti VN, et al. Wound healing effects of dipeptidyl peptidase-4 inhibitors: An emerging concept in management of diabetic foot ulcer-A review. Diabetes Metab Syndr, 2016, 10(2): 113-119.
|
4. |
Salazar JJ, Ennis WJ, Koh TJ. Diabetes medications: Impact on inflammation and wound healing. J Diabetes Complications, 2016, 30(4): 746-752.
|
5. |
Scheen AJ. A review of gliptins for 2014. Expert Opin Pharmacother, 2015, 16(1): 43-62.
|
6. |
Baticic Pucar L, Pernjak Pugel E, Detel D, et al. Involvement of DPP Ⅳ/CD26 in cutaneous wound healing process in mice. Wound Repair Regen, 2017, 25(1): 25-40.
|
7. |
Marfella R, Sasso FC, Rizzo MR, et al. Dipeptidyl peptidase 4 inhibition may facilitate healing of chronic foot ulcers in patients with type 2 diabetes. Exp Diabetes Res, 2012, 2012: 892706.
|
8. |
Long M, Cai L, Li W, et al. DPP-4 inhibitors improve diabetic wound healing via direct and indirect promotion of epithelial-mesenchymal transition and reduction of scarring. Diabetes, 2017, 67(3): 518-531.
|
9. |
Hu MS, Longaker MT. Dipeptidyl peptidase-4, wound healing, scarring, and fibrosis. Plast Reconstr Surg, 2016, 138(5): 1026-1031.
|
10. |
Schürmann C, Linke A, Engelmann-Pilger K, et al. The dipeptidyl peptidase-4 inhibitor linagliptin attenuates inflammation and accelerates epithelialization in wounds of diabetic ob/ob mice. J Pharmacol Exp Ther, 2012, 342(1): 71-80.
|
11. |
Berlanga-Acosta J, Schultz GS, López-Mola E, et al. Glucose toxic effects on granulation tissue productive cells: the diabetics’ impaired healing. Biomed Res Int, 2013, 2013: 256043.
|
12. |
Liu Y, Min D, Bolton T, et al. Increased matrix metalloproteinase-9 predicts poor wound healing in diabetic foot ulcers. Diabetes Care, 2009, 32(1): 117-119.
|
13. |
Li Z, Guo S, Yao F, et al. Increased ratio of serum matrix metalloproteinase-9 against TIMP-1 predicts poor wound healing in diabetic foot ulcers. J Diabetes Complications, 2013, 27(4): 380-382.
|
14. |
Ta NN, Li Y, Schuyler CA, et al. DPP-4 (CD26) inhibitor alogliptin inhibits TLR4-mediated ERK activation and ERK-dependent MMP-1 expression by U937 histiocytes. Atherosclerosis, 2010, 213(2): 429-435.
|
15. |
Proost P, Struyf S, Schols D, et al. Processing by CD26/dipeptidyl-peptidase Ⅳreduces the chemotactic and anti-HIV-1 activity of stromal-cell-derived factor-1alpha. FEBS Lett, 1998, 432(1-2): 73-76.
|
16. |
Fadini GP, Boscaro E, Albiero M, et al. The oral dipeptidyl peptidase-4 inhibitor sitagliptin increases circulating endothelial progenitor cells in patients with type 2 diabetes: possible role of stromal-derived factor-1alpha. Diabetes Care, 2010, 33(7): 1607-1609.
|
17. |
Negro R, Greco EL, Greco G. Active stromal cell-derived factor 1α and endothelial progenitor cells are equally increased by alogliptin in good and poor diabetes control. Clin Med Insights Endocrinol Diabetes, 2017, 10: 1179551417743980.
|
18. |
Dei Cas A, Spigoni V, Cito M, et al. Vildagliptin, but not glibenclamide, increases circulating endothelial progenitor cell number: a 12-month randomized controlled trial in patients with type 2 diabetes. Cardiovasc Diabetol, 2017, 16(1): 27.
|
19. |
Fadini GP, Bonora BM, Cappellari R, et al. Acute effects of linagliptin on progenitor cells, monocyte phenotypes, and soluble mediators in type 2 diabetes. J Clin Endocrinol Metab, 2016, 101(2): 748-756.
|
20. |
Li F, Chen J, Leng F, et al. Effect of saxagliptin on circulating endothelial progenitor cells and endothelial function in newly diagnosed type 2 diabetic patients. Exp Clin Endocrinol Diabetes, 2017, 125(6): 400-407.
|
21. |
Huang CY, Shih CM, Tsao NW, et al. Dipeptidyl peptidase-4 inhibitor improves neovascularization by increasing circulating endothelial progenitor cells. Br J Pharmacol, 2012, 167(7): 1506-1519.
|
22. |
Marchetti C, Di Carlo A, Facchiano F, et al. High mobility group box 1 is a novel substrate of dipeptidyl peptidase-Ⅳ. Diabetologia, 2012, 55(1): 236-244.
|
23. |
Chavakis E, Hain A, Vinci M, et al. High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ Res, 2007, 100(2): 204-212.
|
24. |
De Mori R, Straino S, Di Carlo A, et al. Multiple effects of high mobility group box protein 1 in skeletal muscle regeneration. Arterioscler Thromb Vasc Biol, 2007, 27(11): 2377-2383.
|
25. |
Mitola S, Belleri M, Urbinati C, et al. Cutting edge: extracellular high mobility group box-1 protein is a proangiogenic cytokine. J Immunol, 2006, 176(1): 12-15.
|
26. |
Schlueter C, Weber H, Meyer B, et al. Angiogenetic signaling through hypoxia: HMGB1: an angiogenetic switch molecule. Am J Pathol, 2005, 166(4): 1259-1263.
|
27. |
Straino S, Di Carlo A, Mangoni A, et al. High-mobility group box 1 protein in human and murine skin: involvement in wound healing. J Invest Dermatol, 2008, 128(6): 1545-1553.
|
28. |
Stone RC, Pastar I, Ojeh N, et al. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res, 2016, 365(3): 495-506.
|