1. |
Pereira H, Caridade SG, Frias AM, et al. Biomechanical and cellular segmental characterization of human meniscus: building the basis for Tissue Engineering therapies. Osteoarthritis Cartilage, 2014, 22(9): 1271-1281.
|
2. |
Abrams GD, Frank RM, Gupta AK, et al. Trends in meniscus repair and meniscectomy in the United States, 2005-2011. Am J Sports Med, 2013, 41(10): 2333-2339.
|
3. |
Hasan J, Fisher J, Ingham E. Current strategies in meniscal regeneration. J Biomed Mate Res B Appl Biomater, 2014, 102(3): 619-634.
|
4. |
Howell R, Kumar NS, Patel N, et al. Degenerative meniscus: Pathogenesis, diagnosis, and treatment options. World J Orthop, 2014, 5(5): 597-602.
|
5. |
Mordecai SC, Al-Hadithy N, Ware HE, et al. Treatment of meniscal tears: An evidence based approach. World J Orthop, 2014, 5(3): 233-241.
|
6. |
Pereira H, Frias AM, Oliveira JM, et al. Tissue engineering and regenerative medicine strategies in meniscus lesions. Arthroscopy, 2011, 27(12): 1706-1719.
|
7. |
Guo W, Liu S, Zhu Y, et al. Advances and prospects in tissue-engineered meniscal scaffolds for meniscus regeneration. Stem Cells Int, 2015, 2015: 517520.
|
8. |
Ohno T, Tanisaka K, Hiraoka Y, et al. Effect of type Ⅰ and type Ⅱ collagen sponges as 3D scaffolds for hyaline cartilage-like tissue regeneration on phenotypic control of seeded chondrocytes in vitro. Materials Science and Engineering: C, 2004, 24(3): 407-411.
|
9. |
Nehrer S, Breinan HA, Ramappa A, et al. Canine chondrocytes seeded in type Ⅰ and type Ⅱ collagen implants investigated in vitro. J Biomed Mater Res, 1997, 38(2): 95-104.
|
10. |
Mota C, Puppi D, Chiellini F, et al. Additive manufacturing techniques for the production of tissue engineering constructs. Journal of Tissue Engineering & Regenerative Medicine, 2015, 9(3): 174-190.
|
11. |
陈明学, 郭维民, 沈师, 等. 半月板细胞外基质-海藻酸水凝胶的制备及其对半月板细胞的影响. 中国医药生物技术, 2017, 12(6): 505-512.
|
12. |
Niu W, Guo W, Han S, et al. Cell-based strategies for meniscus tissue engineering. Stem Cells International, 2016, 2016: 4717184.
|
13. |
Sun F, Zhou H, Lee J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomaterialia, 2011, 7(11): 3813-3828.
|
14. |
Zhao C, Tan A, Pastorin G, et al. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnology Advances, 2013, 31(5): 654-668.
|
15. |
Wang YQ, Cai JY. Enhanced cell affinity of poly(l-lactic acid) modified by base hydrolysis: Wettability and surface roughness at nanometer scale. Current Applied Physics, 2007, 7: e108-e111.
|
16. |
Chung TW, Liu DZ, Wang SY, et al. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials, 2003, 24(25): 4655-4661.
|
17. |
Fautrel B, Hilliquin P, Rozenberg S, et al. Impact of osteoarthritis: results of a nationwide survey of 10,000 patients consulting for OA. Joint Bone Spine, 2005, 72(3): 235-240.
|
18. |
Ghosal K, Thomas S, Kalarikkal N, et al. Collagen coated electrospun polycaprolactone (PCL) with titanium dioxide (TiO2) from an environmentally benign solvent: preliminary physico-chemical studies for skin substitute. Journal of Polymer Research, 2014, 21(5): 1-5.
|
19. |
Kirchhof K, Groth T. Surface modification of biomaterials to control adhesion of cells. Clin Hemorheol Microcirc, 2008, 39(1-4): 247-251.
|