1. |
Allen KD, Golightly YM. State of the evidence. Curr Opin Rheumatol, 2015, 27(3): 276-283.
|
2. |
Heijink A, Gomoll AH, Madry H, et al. Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc, 2012, 20(3): 423-435.
|
3. |
Goldring MB, Otero M, Plumb DA, et al. Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur Cell Mater, 2011, 21: 202-220.
|
4. |
Montaseri A, Busch F, Mobasheri A, et al. IGF-1 and PDGF-bb Suppress IL-1β-Induced Cartilage Degradation through Down-Regulation of NF-κB Signaling: Involvement of Src/PI-3K/AKT Pathway. PLoS One, 2011, 6(12): e28663.
|
5. |
Yan D, Chen D, Cool SM, et al. Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes. Arthritis Res Ther, 2011, 13(4): R130.
|
6. |
Davidson D, Blanc A, Filion D, et al. Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis. J Biol Chem, 2005, 280(21): 20509-20515.
|
7. |
Zreiqat H, Belluoccio D, Smith MM, et al. S100A8 and S100A9 in experimental osteoarthritis. Arthritis Res Ther, 2010, 12(1): R16.
|
8. |
Choi IY, Karpus ON, Turner JD, et al. Stromal cell markers are differentially expressed in the synovial tissue of patients with early arthritis. PLoS One, 2017, 12(8): e0182751.
|
9. |
Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther, 2009, 11(3): 227.
|
10. |
Yammani RR. S100 proteins in cartilage: Role in arthritis. Biochim Biophys Acta, 2012, 1822(4): 600-606.
|
11. |
Choi W, Kawanabe H, Sawa Y, et al. Effects of bFGF on suppression of collagen type I accumulation and scar tissue formation during wound healing after mucoperiosteal denudation of rat palate. Acta Odontol Scand, 2008, 66(1): 31-37.
|
12. |
Deng T, Huang S, Zhou S, et al. Cartilage regeneration using a novel gelatin-chondroitin-hyaluronan hybrid scaffold containing bFGF-impregnated microspheres. J Microencapsul, 2007, 24(2): 163-174.
|
13. |
Wang X, Manner PA, Horner A, et al. Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage. Osteoarthritis Cartilage, 2004, 12(12): 963-973.
|
14. |
Schmal H, Zwingmann J, Fehrenbach M, et al. bFGF influences human articular chondrocyte differentiation. Cytotherapy, 2007, 9(2): 184-193.
|
15. |
Im HJ, Muddasani P, Natarajan V, et al. Basic fibroblast growth factor stimulates matrix metalloproteinase-13 via the molecular cross-talk between the mitogen-activated protein kinases and protein kinase Cdelta pathways in human adult articular chondrocytes. J Biol Chem, 2007, 282(15): 11110-11121.
|
16. |
Muddasani P, Norman JC, Ellman M, et al. Basic fibroblast growth factor activates the MAPK and NFkappaB pathways that converge on Elk-1 to control production of matrix metalloproteinase-13 by human adult articular chondrocytes. J Biol Chem, 2007, 282(43): 31409-31421.
|
17. |
Yan D, Chen D, Im HJ. Fibroblast growth factor-2 promotes catabolism via FGFR1-Ras-Raf-MEK1/2-ERK1/2 axis that coordinates with the PKCδ pathway in human articular chondrocytes. J Cell Biochem, 2012, 113(9): 2856-2865.
|