1. |
Elsoe R, Larsen P, Nielsen NP, et al. Population-based epidemiology of tibial plateau fractures. Orthopedics, 2015, 38(9): e780-e786.
|
2. |
Lachiewicz PF, Funcik T. Factors influencing the results of open reduction and internal fixation of tibial plateau fractures. Clin Orthop Relat Res, 1990, (259): 210-215.
|
3. |
Hsu CJ, Chang WN, Wong CY. Surgical treatment of tibial plateau fracture in elderly patients. Arch Orthop Trauma Surg, 2001, 121(1-2): 67-70.
|
4. |
Tscherne H, Lobenhoffer P. Tibial plateau fractures. Management and expected results. Clin Orthop Relat Res, 1993, (292): 87-100.
|
5. |
McNamara IR, Smith TO, Shepherd KL, et al. Surgical fixation methods for tibial plateau fractures. Cochrane Database Syst Rev, 2015, (9): CD009679.
|
6. |
Heikkilä JT, Kukkonen J, Aho AJ, et al. Bioactive glass granules: a suitable bone substitute material in the operative treatment of depressed lateral tibial plateau fractures: a prospective, randomized 1 year follow-up study. J Mater Sci Mater Med, 2011, 22(4): 1073-1080.
|
7. |
晏兆魁, 梁羽, 方跃, 等. 镍钛三维记忆合金网复合自体骨治疗犬胫骨平台塌陷骨折模型生物力学试验. 中国修复重建外科杂志, 2018, 32(6): 722-725.
|
8. |
Wheeler DL, Cross AR, Eschbach EJ, et al. Grafting of massive tibial subchondral bone defects in a caprine model using beta-tricalcium phosphate versus autograft. J Orthop Trauma, 2005, 19(2): 85-91.
|
9. |
王岩, 译. 坎贝尔骨科手术学. 11 版. 北京: 人民军医出版社, 2009: 2472-2485.
|
10. |
Morrison JB. Bioengineering analysis of force actions transmitted by the knee joint. Bio Med, 1968, 3: 164-170.
|
11. |
Larsson S, Hannink G. Injectable bone-graft substitutes: current products, their characteristics and indications, and new developments. Injury, 2011, 42(Suppl 2): S30-S34.
|
12. |
Cornell CN. Osteoconductive materials and their role as substitutes for autogenous bone grafts. Orthop Clin North Am, 1999, 30(4): 591-598.
|
13. |
Goff T, Kanakaris NK, Giannoudis PV. Use of bone graft substitutes in the management of tibial plateau fractures. Injury, 2013, 44(Suppl 1): S86-S94.
|
14. |
Sevcikova J, Pavkova Goldbergova M. Biocompatibility of NiTi alloys in the cell behaviour. Biometals, 2017, 30(2): 163-169.
|
15. |
Li Y, Wang F, Hu P, et al. Feasibility of shape-memory Ni/Ti alloy wire containing tube elevators for transcrestal detaching maxillary sinus mucosa: Ex vivo study. Cell Physiol Biochem, 2016, 40(5): 944-952.
|
16. |
王成健, 孟增东, 张玉勤, 等. 镍钛形状记忆合金的生物相容性研究进展. 生物骨科材料与临床研究, 2016, 13(1): 65-68, 72.
|
17. |
林斌, 王岩, 赵卫东, 等. 镍钛记忆合金网球治疗股骨头缺血性坏死的生物力学及三维有限元分析. 中国矫形外科杂志, 2003, 11(15): 1059-1062.
|
18. |
赵定麟, 张文明. 形状记忆合金椎间关节用于颈椎病前路减压术. 中华外科杂志, 1984, 22(7): 410-412.
|
19. |
吕晓华, 陈根元, 曲国欣, 等. 镍钛形态记忆合金环抱器与重建钢板置入内固定治疗尺桡骨中段骨折的比较. 中国组织工程研究与临床康复, 2010, 14(52): 9827-9830.
|
20. |
刘欣伟, 王攀峰, 付青格, 等. 动力髋螺钉结合记忆合金弓齿钉治疗股骨粗隆下 SeinsheimerⅤ型粉碎性骨折. 中国骨伤, 2010, 23(4): 288-290.
|
21. |
Liu X, Xu S, Zhang C, et al. Application of a shape-memory alloy internal fixator for treatment of acetabular fractures with a follow-up of two to nine years in China. Int Orthop, 2010, 34(7): 1033-1040.
|
22. |
Su JC, Liu XW, Yu BQ, et al. Shape memory Ni-Ti alloy swan-like bone connector for treatment of humeral shaft nonunion. Int Orthop, 2010, 34(3): 369-375.
|