1. |
Xie L, Ji T, Guo W. Anti-angiogenesis target therapy for advanced osteosarcoma (Review). Oncol Rep, 2017, 38(2): 625-636.
|
2. |
Bielack SS, Hecker-Nolting S, Blattmann C, et al. Advances in the management of osteosarcoma.(2016-11-25).[2018-01-04] https://f1000research.com/articles/5-2767/v1.
|
3. |
Baczyk M, Czepczyński R, Milecki P, et al. 89Sr versus 153Sm-EDTMP: comparison of treatment efficacy of painful bone metastases in prostate and breast carcinoma. Nucl Med Commun, 2007, 28(4): 245-250.
|
4. |
Tome Y, Kimura H, Sugimoto N, et al. The disintegrin echistatin in combination with doxorubicin targets high-metastatic human osteosarcoma overexpressing ανβ3 integrin in chick embryo and nude mouse models. Oncotarget, 2016, 7(52): 87031-87036.
|
5. |
Sprague JE, Kitaura H, Zou W, et al. Noninvasive imaging of osteoclasts in parathyroid hormone-induced osteolysis using a 64culabeled rgd peptide. J Nucl Med, 2007, 48(2): 311-318.
|
6. |
Shi J, Zhou Y, Chakraborty S, et al. Evaluation of in-labeled cyclic RGD peptides: effects of peptide and linker multiplicity on their tumor uptake, excretion kinetics and metabolic stability. Theranostics, 2011, 1: 322-340.
|
7. |
Dijkgraaf I, Yim CB, Franssen GM, et al. PET imaging of αvβ3 integrin expression in tumours with 68Ga-labelled mono-, di- and tetrameric RGD peptides. Eur J Nucl Med Mol Imaging, 2011, 38(1): 128-137.
|
8. |
Auzzas L, Zanardi F, Battistini L, et al. Targeting alphavbeta3 integrin: design and applications of mono- and multifunctional RGD-based peptides and semipeptides. Curr Med Chem, 2010, 17(13): 1255-1299.
|
9. |
Zhao ZQ, Yang Y, Fang W, et al. Comparison of biological properties of 99mTc-labeled cyclic RGD Peptide trimer and dimer useful as SPECT radiotracers for tumor imaging. Nucl Med Biol, 2016, 43(11): 661-669.
|
10. |
杨晓, 李思, 向尚, 等. RNA干扰降低唾液酸酶3表达对骨肉瘤MG-63细胞增殖和凋亡影响的实验研究. 中国修复重建外科杂志, 2018, 32(7): 887-892.
|
11. |
吴凡, 方向, 郎志刚, 等. 人工全股骨置换术治疗股骨恶性肿瘤. 中国修复重建外科杂志, 2019, 33(1): 18-22.
|
12. |
Zhao K, Yang SY, Geng J, et al. Combination of anginex gene therapy and radiation decelerates the growth and pulmonary metastasis of human osteosarcoma xenografts. Cancer Med, 2018, 7(6): 2518-2529.
|
13. |
Zhang Y, Zvi YS, Batko B, et al. Down-regulation of Skp2 expression inhibits invasion and lung metastasis in osteosarcoma. Sci Rep, 2018, 8(1): 14294.
|
14. |
Fang Z, Sun Y, Xiao H, et al. Targeted osteosarcoma chemotherapy using RGD peptide-installed doxorubicin-loaded biodegradable polymeric micelle. Biomed Pharmacother, 2017, 85: 160-168.
|
15. |
Chang R, Sun L, Webster TJ, et al. Selective inhibition of MG-63 osteosarcoma cell proliferation induced by curcumin-loaded self-assembled arginine-rich-RGD nanospheres. Int J Nanomedicine, 2015, 10: 3351-3365.
|
16. |
Bhang HE, Gabrielson KL, Laterra J, et al. Tumor-specific imaging through progression elevated gene-3 promoter-driven gene expression. Nat Med, 2011, 17(1): 123-129.
|
17. |
Shokri B, Zarghi A, Shahhoseini S, et al. Design, synthesis and biological evaluation of ketoprofen conjugated to RGD/NGR for targeted cancer therapy. Iran J Pharm Res, 2018, 17(4): 1297-1305.
|
18. |
Cheng Y, Ji Y. RGD-modified polymer and liposome nanovehicles: Recent research progress for drug delivery in cancer therapeutics. Eur J Pharm Sci, 2018, 128: 8-17.
|
19. |
Kumar C, Korde A, Kumari KV, et al. Cellular toxicity and apoptosis studies in osteocarcinoma cells, a comparison of 177Lu-EDTMP and Lu-EDTMP. Curr Radiopharm, 2013, 6(3): 146-151.
|
20. |
Karimi Ghodoosi E, D’Alessandria C, Li Y, et al. The effect of attenuation map, scatter energy window width, and volume of interest on the calibration factor calculation in quantitative 177Lu SPECT imaging: Simulation and phantom study. Phys Med, 2018, 56: 74-80.
|
21. |
Hippeläinen E, Tenhunen M, Mäenpää H, et al. Quantitative accuracy of 177Lu SPECT reconstruction using different compensation methods: phantom and patient studies. EJNMMI Res, 2016, 6(1): 16.
|