1. |
Furuya M, Kikuta J, Fujimori S, et al. Direct cell-cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo. Nat Commun, 2018, 9(1): 300.
|
2. |
Montagnani A. Bone anabolics in osteoporosis: Actuality and perspectives. World J Orthop, 2014, 5(3): 247-254.
|
3. |
Väänänen HK, Laitala-Leinonen T. Osteoclast lineage and function. Arch Biochem Biophys, 2008, 473(2): 132-138.
|
4. |
Väänänen HK, Zhao H, Mulari M, et al. The cell biology of osteoclast function. J Cell Sci, 2000, 113(Pt 3): 377-381.
|
5. |
Okaji M, Sakai H, Sakai E, et al. The regulation of bone resorption in tooth formation and eruption processes in mouse alveolar crest devoid of cathepsin k. J Pharmacol Sci, 2003, 91(4): 285-294.
|
6. |
Garnero P, Borel O, Byrjalsen I, et al. The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem, 1998, 273(48): 32347-32352.
|
7. |
Borel O, Gineyts E, Bertholon C, et al. Cathepsin K preferentially solubilizes matured bone matrix. Calcif Tissue Int, 2012, 91(1): 32-39.
|
8. |
Gowen M, Lazner F, Dodds R, et al. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res, 1999, 14(10): 1654-1663.
|
9. |
Saftig P, Hunziker E, Wehmeyer O, et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci U S A, 1998, 95(23): 13453-13458.
|
10. |
Drake MT, Clarke BL, Oursler MJ, et al. Cathepsin K inhibitors for osteoporosis: biology, potential clinical utility, and lessons learned. Endocr Rev, 2017, 38(4): 325-350.
|
11. |
Nesbitt SA, Horton MA. Trafficking of matrix collagens through bone-resorbing osteoclasts. Science, 1997, 276(5310): 266-269.
|
12. |
Salo J, Lehenkari P, Mulari M, et al. Removal of osteoclast bone resorption products by transcytosis. Science, 1997, 276(5310): 270-273.
|
13. |
Vääräniemi J, Halleen JM, Kaarlonen K, et al. Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J Bone Miner Res, 2004, 19(9): 1432-1440.
|
14. |
Ljusberg J, Wang Y, Lång P, et al. Proteolytic excision of a repressive loop domain in tartrate-resistant acid phosphatase by cathepsin K in osteoclasts. J Biol Chem, 2005, 280(31): 28370-28381.
|
15. |
Halleen JM, Räisänen S, Salo JJ, et al. Intracellular fragmentation of bone resorption products by reactive oxygen species generated by osteoclastic tartrate-resistant acid phosphatase. J Biol Chem, 1999, 274(33): 22907-22910.
|
16. |
Alatalo SL, Halleen JM, Hentunen TA, et al. Rapid screening method for osteoclast differentiation in vitro that measures tartrate-resistant acid phosphatase 5b activity secreted into the culture medium. Clin Chem, 2000, 46(11): 1751-1754.
|
17. |
Rissanen JP, Suominen MI, Peng Z, et al. Secreted tartrate-resistant acid phosphatase 5b is a marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model. Calcif Tissue Int, 2008, 82(2): 108-115.
|
18. |
Wu Y, Lee JW, Uy L, et al. Tartrate-resistant acid phosphatase (TRACP 5b): a biomarker of bone resorption rate in support of drug development: modification, validation and application of the BoneTRAP kit assay. J Pharm Biomed Anal, 2009, 49(5): 1203-1212.
|
19. |
Hill PA, Murphy G, Docherty AJ, et al. The effects of selective inhibitors of matrix metalloproteinases (MMPs) on bone resorption and the identification of MMPs and TIMP-1 in isolated osteoclasts. J Cell Sci, 1994, 107(Pt 11): 3055-3064.
|
20. |
Spessotto P, Rossi FM, Degan M, et al. Hyaluronan-CD44 interaction hampers migration of osteoclast-like cells by down-regulating MMP-9. J Cell Biol, 2002, 158(6): 1133-1144.
|
21. |
Samanna V, Ma T, Mak TW, et al. Actin polymerization modulates CD44 surface expression, MMP-9 activation, and osteoclast function. J Cell Physiol, 2007, 213(3): 710-720.
|
22. |
Engsig MT, Chen QJ, Vu TH, et al. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol, 2000, 151(4): 879-889.
|
23. |
Dougall WC, Glaccum M, Charrier K, et al. RANK is essential for osteoclast and lymph node development. Genes Dev, 1999, 13(18): 2412-2424.
|
24. |
Li J, Sarosi I, Yan XQ, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A, 2000, 97(4): 1566-1571.
|
25. |
Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature, 2003, 423(6937): 337-342.
|
26. |
Mizuno A, Amizuka N, Irie K, et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun, 1998, 247(3): 610-615.
|
27. |
Bucay N, Sarosi I, Dunstan CR, et al. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev, 1998, 12(9): 1260-1268.
|
28. |
Song R, Gu J, Liu X, et al. Inhibition of osteoclast bone resorption activity through osteoprotegerin-induced damage of the sealing zone. Int J Mol Med, 2014, 34(3): 856-862.
|
29. |
Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol, 2005, 21: 247-269.
|
30. |
Palmqvist P, Persson E, Conaway HH, et al. IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae. J Immunol, 2002, 169(6): 3353-3362.
|
31. |
Hattersley G, Chambers TJ. Calcitonin receptors as markers for osteoclastic differentiation: correlation between generation of bone-resorptive cells and cells that express calcitonin receptors in mouse bone marrow cultures. Endocrinology, 1989, 125(3): 1606-1612.
|
32. |
Kulterer B, Friedl G, Jandrositz A, et al. Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC Genomics, 2007, 8: 70.
|
33. |
Huang Z, Nelson ER, Smith RL, et al. The sequential expression profiles of growth factors from osteoprogenitors [correction of osteroprogenitors] to osteoblasts in vitro. Tissue Eng, 2007, 13(9): 2311-2320.
|
34. |
Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int, 2006, 17(3): 319-336.
|
35. |
Staines KA, MacRae VE, Farquharson C. The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. J Endocrinol, 2012, 214(3): 241-255.
|
36. |
Neve A, Corrado A, Cantatore FP. Osteocalcin: skeletal and extra-skeletal effects. J Cell Physiol, 2013, 228(6): 1149-1153.
|
37. |
Fleisher GA, Eickelberg ES, Elveback LR. Alkaline phosphatase activity in the plasma of children and adolescents. Clin Chem, 1977, 23(3): 469-472.
|
38. |
Canalis E. Effect of hormones and growth factors on alkaline phosphatase activity and collagen synthesis in cultured rat calvariae. Metabolism, 1983, 32(1): 14-20.
|
39. |
Marie PJ, Travers R. Continuous infusion of 1,25-dihydroxyvitamin D3 stimulates bone turnover in the normal young mouse. Calcif Tissue Int, 1983, 35(4-5): 418-425.
|
40. |
Farley JR, Baylink DJ. Skeletal alkaline phosphatase activity as a bone formation index in vitro. Metabolism, 1986, 35(6): 563-571.
|
41. |
Fedde KN, Lane CC, Whyte MP. Alkaline phosphatase is an ectoenzyme that acts on micromolar concentrations of natural substrates at physiologic pH in human osteosarcoma (SAOS-2) cells. Arch Biochem Biophys, 1988, 264(2): 400-409.
|
42. |
Ullrich SJ, Glaubitz C. Perspectives in enzymology of membrane proteins by solid-state NMR. Acc Chem Res, 2013, 46(9): 2164-2171.
|
43. |
Haarhaus M, Brandenburg V, Kalantar-Zadeh K, et al. Alkaline phosphatase: a novel treatment target for cardiovascular disease in CKD. Nat Rev Nephrol, 2017, 13(7): 429-442.
|
44. |
Jikko A, Harris SE, Chen D, et al. Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2. J Bone Miner Res, 1999, 14(7): 1075-1083.
|
45. |
Epstein EH Jr, Munderloh NH. Isolation and characterization of CNBr peptides of human (alpha 1(III) )3 collagen and tissue distribution of (alpha 1(I) )2 alpha 2 and (alpha 1(III) )3 collagens. J Biol Chem, 1975, 250(24): 9304-9312.
|
46. |
Jikko A, Harris SE, Chen D, et al. Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2. J Bone Miner Res, 1999, 14(7): 1075-1083.
|
47. |
Twine NA, Chen L, Pang CN, et al. Identification of differentiation-stage specific markers that define the ex vivo osteoblastic phenotype. Bone, 2014, 67: 23-32.
|
48. |
Franceschi RT, Iyer BS, Cui Y. Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J Bone Miner Res, 1994, 9(6): 843-854.
|
49. |
Quarles LD, Yohay DA, Lever LW, et al. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res, 1992, 7(6): 683-692.
|
50. |
Mikami Y, Asano M, Honda MJ, et al. Bone morphogenetic protein 2 and dexamethasone synergistically increase alkaline phosphatase levels through JAK/STAT signaling in C3H10T1/2 cells. J Cell Physiol, 2010, 223(1): 123-133.
|
51. |
de Vries S, Albracht SP. Intensity of highly anisotropic low-spin heme EPR signals. Biochim Biophys Acta, 1979, 546(2): 334-340.
|
52. |
Boskey AL, Gadaleta S, Gundberg C, et al. Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone, 1998, 23(3): 187-196.
|
53. |
Thurner PJ, Chen CG, Ionova-Martin S, et al. Osteopontin deficiency increases bone fragility but preserves bone mass. Bone, 2010, 46(6): 1564-1573.
|
54. |
Hauschka PV, Carr SA. Calcium-dependent alpha-helical structure in osteocalcin. Biochemistry, 1982, 21(10): 2538-2547.
|
55. |
Rammelt S, Neumann M, Hanisch U, et al. Osteocalcin enhances bone remodeling around hydroxyapatite/collagen composites. J Biomed Mater Res A, 2005, 73(3): 284-294.
|
56. |
Tsao YT, Huang YJ, Wu HH, et al. Osteocalcin Mediates Biomineralization during Osteogenic Maturation in Human Mesenchymal Stromal Cells. Int J Mol Sci, 2017, 18(1): pii: E159.
|
57. |
Ducy P, Desbois C, Boyce B, et al. Increased bone formation in osteocalcin-deficient mice. Nature, 1996, 382(6590): 448-452.
|
58. |
Bodine PV, Komm BS. Evidence that conditionally immortalized human osteoblasts express an osteocalcin receptor. Bone, 1999, 25(5): 535-543.
|
59. |
Giachelli CM, Steitz S. Osteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol, 2000, 19(7): 615-622.
|
60. |
Rodriguez DE, Thula-Mata T, Toro EJ, et al. Multifunctional role of osteopontin in directing intrafibrillar mineralization of collagen and activation of osteoclasts. Acta Biomater, 2014, 10(1): 494-507.
|
61. |
Kojima H, Uede T, Uemura T. In vitro and in vivo effects of the overexpression of osteopontin on osteoblast differentiation using a recombinant adenoviral vector. J Biochem, 2004, 136(3): 377-386.
|
62. |
Mizuno M, Imai T, Fujisawa R, et al. Bone sialoprotein (BSP) is a crucial factor for the expression of osteoblastic phenotypes of bone marrow cells cultured on type Ⅰ collagen matrix. Calcif Tissue Int, 2000, 66(5): 388-396.
|
63. |
Gordon JA, Tye CE, Sampaio AV, et al. Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone, 2007, 41(3): 462-473.
|
64. |
Malaval L, Wade-Guéye NM, Boudiffa M, et al. Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. J Exp Med, 2008, 205(5): 1145-1153.
|
65. |
Cooper LF, Yliheikkilä PK, Felton DA, et al. Spatiotemporal assessment of fetal bovine osteoblast culture differentiation indicates a role for BSP in promoting differentiation. J Bone Miner Res, 1998, 13(4): 620-632.
|
66. |
Gordon JA, Tye CE, Sampaio AV, et al. Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone, 2007, 41(3): 462-473.
|
67. |
Hunter GK, Goldberg HA. Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci U S A, 1993, 90(18): 8562-8565.
|
68. |
Meredith JE Jr, Winitz S, Lewis JM, et al. The regulation of growth and intracellular signaling by integrins. Endocr Rev, 1996, 17(3): 207-220.
|
69. |
Giusta MS, Andrade H, Santos AV, et al. Proteomic analysis of human mesenchymal stromal cells derived from adipose tissue undergoing osteoblast differentiation. Cytotherapy, 2010, 12(4): 478-490.
|
70. |
Granéli C, Thorfve A, Ruetschi U, et al. Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach. Stem Cell Res, 2014, 12(1): 153-165.
|
71. |
Zhang AX, Yu WH, Ma BF, et al. Proteomic identification of differently expressed proteins responsible for osteoblast differentiation from human mesenchymal stem cells. Mol Cell Biochem, 2007, 304(1-2): 167-179.
|
72. |
William F, Mroczkowski B, Cohen S, et al. Differentiation of HL-60 cells is associated with an increase in the 35-kDa protein lipocortin I. J Cell Physiol, 1988, 137(3): 402-410.
|
73. |
Ye NS, Chen J, Luo GA, et al. Proteomic profiling of rat bone marrow mesenchymal stem cells induced by 5-azacytidine. Stem Cells Dev, 2006, 15(5): 665-676.
|
74. |
周颖, 侯树勋, 陈秉耀, 等. 骨髓间充质干细胞定向诱导成骨分化的蛋白质组学分析. 中国骨肿瘤骨病, 2009, 8(5): 296-299.
|
75. |
Kim JM, Kim J, Kim YH, et al. Comparative secretome analysis of human bone marrow-derived mesenchymal stem cells during osteogenesis. J Cell Physiol, 2013, 228(1): 216-224.
|
76. |
Alves RD, Eijken M, Swagemakers S, et al. Proteomic analysis of human osteoblastic cells: relevant proteins and functional categories for differentiation. J Proteome Res, 2010, 9(9): 4688-4700.
|
77. |
Pan X, Peng L, Yin G. Downregulation of Annexin A1 by short hairpin RNA inhibits the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Int J Mol Med, 2015, 36(2): 406-414.
|
78. |
Kim JS, Lee HK, Kim MR, et al. Differentially expressed proteins of mesenchymal stem cells derived from human cord blood (hUCB) during osteogenic differentiation. Biosci Biotechnol Biochem, 2008, 72(9): 2309-2317.
|
79. |
Baroncelli M, van der Eerden BC, Kan YY, et al. Comparative proteomic profiling of human osteoblast-derived extracellular matrices identifies proteins involved in mesenchymal stromal cell osteogenic differentiation and mineralization. J Cell Physiol, 2018, 233(1): 387-395.
|