1. |
Tuzlakoglu K, Bolgen N, Salgado AJ, et al. Nano- and micro-fiber combined scaffolds: a new architecture for bone tissue engineering. J Mater Sci Mater Med, 2005, 16(12): 1099-1104.
|
2. |
Sun B, Jiang XJ, Zhang SC, et al. Electrospun anisotropic architectures and porous structures for tissue engineering. J Mater Chem B, 2015, 3(27): 5389-5410.
|
3. |
Zhang YZ, Su B, Venugopal J, et al. Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers. Int J Nanomedicine, 2007, 2(4): 623-638.
|
4. |
Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer, 2008, 49(26): 5603-5621.
|
5. |
Fu W, Liu Z, Feng B, et al. Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering. Int J Nanomedicine, 2014, 9: 2335-2344.
|
6. |
Xu T, Yang H, Yang D, et al. Polylactic acid nanofiber scaffold decorated with chitosan islandlike topography for bone tissue engineering. ACS Appl Mater Interfaces, 2017, 9(25): 21094-21104.
|
7. |
Im SH, Jung Y, Jang Y, et al. Poly (L-lactic acid) scaffold with oriented micro-valley surface and superior properties fabricated by solid-state drawing for blood-contact biomaterials. Biofabrication, 2016, 8(4): 045010.
|
8. |
Rosales-Leal JI, Rodríguez-Valverde MA, Mazzaglia G, et al. Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids & Surfaces A: Physicochem. Eng. Aspects, 2010, 365(1): 222-229.
|
9. |
储成艳, 朱亮, 王苏平, 等. 胶原凝胶构建神经组织工程支架的实验研究. 中国修复重建外科杂志, 2017, 31(3): 363-368.
|
10. |
Yang A, Huang Z, Yin G, et al. Fabrication of aligned, porous and conductive fibers and their effects on cell adhesion and guidance. Colloids Surf B Biointerfaces, 2015, 134: 469-474.
|
11. |
Podufaly Bauer AJ, Grim ZB, Li B. Hierarchical polymer blend fibers of high structural regularity prepared by facile solvent vapor annealing treatment. Macromol Mater Eng, 2018, 303(1): 1-7.
|
12. |
Chen H, Huang X, Zhang M, et al. Tailoring surface nanoroughness of electrospun scaffolds for skeletal tissue engineering. Acta Biomater, 2017, 59: 82-93.
|
13. |
Wang X, Gao Y, Xu Y, et al. A prerequisite of the poly (epsilon-caprolactone) self-induced nanohybrid shish-kebab structure formation: an ordered crystal lamellae orientation morphology of fibers. Macromol Chem Phys, 2017, 218(24): 1-6.
|
14. |
Dias JR, Granja PL, Bártolo PJ. Advances in electrospun skin substitutes. Progress in Materials Science, 2016, 84: 314-334.
|
15. |
蔡江瑜, 蒋佳, 莫秀梅, 等. 丝素蛋白/聚乳酸-聚己内酯纳米纤维支架对兔腱-骨愈合影响的实验研究. 中国修复重建外科杂志, 2017, 31(8): 957-962.
|
16. |
Liu J, Bauer AJ, Li B. Solvent vapor annealing: an efficient approach for inscribing secondary nanostructures onto electrospun fibers. Macromol Rapid Commun, 2014, 35(17): 1503-1508.
|
17. |
Zhou Q, Xie J, Bao M, et al. Engineering aligned electrospun PLLA microfibers with nano-porous surface nanotopography for modulating responses of vascular smooth muscle cells. J Mater Chem B, 2015, 3(3): 4439-4450.
|
18. |
Chen X, Gleeson SE, Yu T, et al. Hierarchically ordered polymer nanofiber shish kebabs as a bone scaffold material. J Biomed Mater Res A, 2017, 105(6): 1786-1798.
|
19. |
Mao W, Yoo HS. Pluronic-Induced Surface Etching of Biodegradable Nanofibers for Enhanced Adsorption of Serum Protein. Macromol Biosci, 2017, 17(8).
|
20. |
Jing X, Mi HY, Cordie TM, et al. Fabrication of shish-kebab structured poly (epsilon-caprolactone) electrospun nanofibers that mimic collagen fibrils: Effect of solvents and matrigel functionalization. Polymer, 2014, 55(21): 5396-5406.
|
21. |
Katsogiannis KAG, Vladisavljević GT, Georgiadou S. Porous electrospun polycaprolactone fibers: effect of process parameters. J Polym Sci Part B, 2016, 54(18): 1878-1888.
|
22. |
Zamani F, Amani-Tehran M, Latifi M, et al. The influence of surface nanoroughness of electrospun PLGA nanofibrous scaffold on nerve cell adhesion and proliferation. J Mater Sci Mater Med, 2013, 24(6): 1551-1560.
|