1. |
Ng AH, Uddayasankar U, Wheeler AR. Immunoassays in microfluidic systems. Anal BioanalChem, 2010, 397(3): 991-1007.
|
2. |
Xu Y, Yang X, Wang E. Review:Aptamers in microfluidic chips. Anal ChimActa, 2010, 683(1): 12-20.
|
3. |
Varghese SS, Zhu Y, Davis TJ, et al. FRET for lab-on-a-chip devices-current trends and future prospects. Lab Chip, 2010, 10(11): 1355-1364.
|
4. |
Vincent ME, Liu W, Haney EB, et al. Microfiuidic stochastic confinement enhances analysis of rate cells by isolating cells and creating high density environments for control of diffusible signals. Chem Soc Rev, 2010, 39(3): 974-984.
|
5. |
Papp K, Végh P, Hóbor R, et al. Characterization of factors influencing on-chip complement activation to optimize parallel measurement of antibody and complement proteins on antigen microarrays. J Immunol Methods, 2011, 375(1-2): 75-83.
|
6. |
Toh A, Wang Z, Yang C, et al. Engineering microfluidic concentration gradient generators for biological applications. Microfluidics and Nanofluidics, 2014, 16(1): 1-18.
|
7. |
Plessy C, Desbois L, Fujii T, et al. Population transcriptomics with single-cell resolution: a new field made possible by microfluidics: a technology for high throughput transcript counting and data-driven definition of cell types. Bioessays, 2013, 35(2): 131-140.
|
8. |
Qin J, Ye N, Liu X, et al. Microfluidic devices for the analysis of apoptosis. Electrophoresis, 2005, 26(19): 3780-3788.
|
9. |
Sia SK, Whitesides GM. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis, 2003, 24(21): 3563-3576.
|
10. |
Sanders G, Manz A. Chip-based microsystems for genomic and proteomic analysis. TrAC Trends in Analytical Chemistry, 2000, 19(6): 364-378.
|
11. |
ShenF, KastrupCJ, Ismagilov F. Using microfluidics to understand the effect of spatial distribution of tissue factor on blood coagulation. Thrombosis Research, 2008, 122(Suppl1): S27-S30.
|
12. |
Gomez N, Lu Y, Chen S, et al. Immobilized nerve growth factor and microtopography havedistinct effects on polarization versus axon elongation in hippocampal cells in culture. Biomaterials, 2007, 28(2): 271-284.
|
13. |
Taylor AM, Blurton-Jones M, Rhee SW, et al. A microfluidic culture platform for CNSaxonal injury, regenerationand transport. Nature Methods, 2005, 2(8): 599-605.
|
14. |
Christian KM, Song HJ, Ming GL. Functions and dysfunctions of adult hippocampalneurogenesis. Annual Review of Neuroscience, 2014, 37(1): 243.
|
15. |
Parihar VK, Limoli CL. Cranial irradiation compromises neuronal architecture in the hippocampus. Proc Natl Acad Sci USA, 2013, 110(31): 12822-12827.
|
16. |
Chakraborti A, Allen A, Allen B, et al. Cranial irradiation alters dendritic spine densityand morphology in the hippocampus. PLoS One, 2012, 7(7): e40844.
|