- 1. National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu Sichuan, 610041, P.R.China;
- 2. Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha Hunan, 410006, P.R.China;
Citation: WU Yue, LI Kun, ZHANG Yan, DONG Jia, YU Mei, TIAN Weidong. Research progress in adipose tissue promoted wound healing. Chinese Journal of Reparative and Reconstructive Surgery, 2019, 33(6): 756-761. doi: 10.7507/1002-1892.201811095 Copy
1. | Tricco AC, Cogo E, Isaranuwatchai W, et al. A systematic review of cost-effectiveness analyses of complex wound interventions reveals optimal treatments for specific wound types. BMC Med, 2015, 13(1): 90. |
2. | Powers JG, Higham C, Broussard K, et al. Wound healing and treating wounds: Chronic wound care and management. J Am Acad Dermatol, 2016, 74(4): 607-625. |
3. | Klein J, Permana PA, Owecki M, et al. What are subcutaneous adipocytes really good for? Exp Dermatol, 2007, 16(1): 45-47. |
4. | Scherer PE. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes, 2006, 55(6): 1537-1545. |
5. | Romacho T, Elsen M, Röhrborn D, et al. Adipose tissue and its role in organ crosstalk. Acta Physiol (Oxf), 2014, 210(4): 733-753. |
6. | Ouchi N, Parker JL, Lugus JJ, et al. Adipokines in inflammation and metabolic disease. Nat Rev Immunol, 2011, 11(2): 85-97. |
7. | Rodeheffer MS, Birsoy K, Friedman JM. Identification of white adipocyte progenitor cells in vivo. Cell, 2008, 135(2): 240. |
8. | Tang W, Zeve D, Suh JM, et al. White fat progenitor cells reside in the adipose vasculature. Science, 2008, 322(5901): 583-586. |
9. | Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M, et al. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy, 2006, 8(2): 166-177. |
10. | Kim WS, Park BS, Sung JH. The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin Biol Ther, 2009, 9(7): 879-887. |
11. | 熊佳超, 宋建星. 脂肪来源干细胞治疗难愈性创面的研究进展. 中国修复重建外科杂志, 2018, 32(4): 457-461. |
12. | Sun M, He Y, Zhou T, et al. Adipose extracellular matrix/stromal vascular fraction gel secretes angiogenic factors and enhancesskin wound healing in a murine model. Biomed Res Int, 2017, 2017(1): 3105780. |
13. | Yao Y, Dong Z, Liao Y, et al. Adipose extracellular matrix/stromal vascular fraction gel: a novel adipose tissue-derived injectable for stem cell therapy. Plastic Reconstr Surg, 2017, 139(4): 867-879. |
14. | Hoy AJ, Balaban S, Saunders DN. Adipocyte-tumor cell metabolic crosstalk in breast cancer. Trends Mol Med, 2017, 23(5): 381-392. |
15. | Maurizi G, Della GL, Maurizi A, et al. Adipocytes properties and crosstalk with immune system in obesity-related inflammation. J Cellular Physiology, 2018, 233(1): 88-97. |
16. | Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr, 2004, 92(3): 347-355. |
17. | Schmidt BA, Horsley V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development, 2013, 140(7): 1517-1527. |
18. | Guerrero-Juarez CF, Plikus MV. Emerging nonmetabolic functions of skin fat. Nature Reviews Endocrinology, 2018, 14: 163-173. |
19. | Plikus MV, Guerrero-Juarez CF, Ito M, et al. Regeneration of fat cells from myofibroblasts during wound healing. Science, 2017, 355(6326): 748-752. |
20. | Rivera-Gonzalez G, Shook B, Horsley V. Adipocytes in skin health and disease. Cold Spring Harb Perspect Med, 2014, 4(3): a015271. |
21. | Buchon N, Silverman N, Cherry S. Immunity in drosophila melanogaster——from microbial recognition to whole-organism physiology. Nat Rev Immunol, 2014, 14(12): 796-810. |
22. | Zhang LJ, Guerrero-Juarez CF, Hata T, et al. Innate immunity. Dermal adipocytes protect against invasive. Staphylococcus aureus skin infection. Science, 2015, 347(6217): 67-71. |
23. | Franz A, Wood W, Martin P. Fat body cells are motile and actively migrate to wounds to drive repair and prevent infection. Dev Cell, 2018, 44(4): 460-470.e3. |
24. | Mariman EC, Wang P. Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell Mol Life Sci, 2010, 67(8): 1277-1292. |
25. | Pierleoni C, Verdenelli F, Castellucci M, et al. Fibronectins and basal lamina molecules expression in human subcutaneous white adipose tissue. Eur J Histochem, 1998, 42(3): 183-188. |
26. | Louis F, Pannetier P, Souguir Z, et al. A biomimetic hydrogel functionalized with adipose ECM components as a microenvironment for the 3D culture of human and murine adipocytes. Biotechnology & Bioengineering, 2017, 114(8): 1813-1824. |
27. | Flynn LE. The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials, 2010, 31(17): 4715-4724. |
28. | Dong J, Yu M, Zhang Y, et al. Recent developments and clinical potential on decellularized adipose tissue. J Biomed Mater Res A, 2018, 106(9): 2563-2574. |
29. | Shahin TB, Vaishnav KV, Watchman M, et al. Tissue augmentation with allograft adipose matrix for the diabetic foot in remission. Plast Reconstr Surg Glob Open, 2017, 5(10): e1555. |
30. | Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol, 2005, 115(5): 911-919. |
31. | Mohamed-Ali V, Pinkney JH, Coppack SW. Adipose tissue as an endocrine and paracrine organ. Int J Obes Relat Metab Disord, 1998, 22(12): 1145-1158. |
32. | Masuzaki H, Ogawa Y, Isse N, et al. Human obese gene expression. Adipocyte-specific expression and regional differences in the adipose tissue. Diabetes, 1995, 44(7): 855-858. |
33. | Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature, 1994, 372(6505): 425-432. |
34. | Masuzaki H, Ogawa Y, Sagawa N, et al. Nonadipose tissue production of leptin: leptin as a novel placenta-derived hormone in humans. Nat Med, 1997, 3(9): 1029-1033. |
35. | Bado A, Levasseur S, Attoub S, et al. The stomach is a source of leptin. Nature, 1998, 394(6695): 790-793. |
36. | Wang J, Liu R, Hawkins M, et al. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature, 1998, 393(6686): 684-688. |
37. | Morash B, Li A, Murphy PR, et al. Leptin gene expression in the brain and pituitary gland. Endocrinology, 1999, 140(12): 5995-5998. |
38. | Frank S, Stallmeyer B, Kampfer H, et al. Leptin enhances wound re-epithelialization and constitutes a direct function of leptin in skin repair. J Clin Invest, 2000, 106(4): 501-509. |
39. | Ring BD, Scully S, Davis CR, et al. Systemically and topically administered leptin both accelerate wound healing in diabetic ob/ob mice. Endocrinology, 2000, 141(1): 446-449. |
40. | Park HY, Kwon HM, Lim HJ, et al. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med, 2001, 33(2): 95-102. |
41. | Sierra-Honigmann MR, Nath AK, Murakami C, et al. Biological action of leptin as an angiogenic factor. Science, 1998, 281(5383): 1683-1686. |
42. | Stallmeyer B, Kämpfer H, Podda M, et al. A novel keratinocyte mitogen: regulation of leptin and its functional receptor in skin repair. J Invest Dermatol, 2001, 117(1): 98-105. |
43. | Tadokoro S, Ide S, Tokuyama R, et al. Leptin promotes wound healing in the skin. PLoS One, 2015, 10(3): e0121242. |
44. | 李培兵, 金宏, 刘佃辛, 等. 瘦素促进皮肤创伤大鼠胶原合成的实验研究. 中国应用生理学杂志, 2011, 27(1): 72-74. |
45. | Goren I, Kämpfer H, Podda M, et al. Leptin and wound inflammation in diabetic ob/ob mice: differential regulation of neutrophil and macrophage influx and a potential role for the scab as a sink for inflammatory cells and mediators. Diabetes, 2003, 52(11): 2821-2832. |
46. | Liapaki I, Anagnostoulis S, Karayiannakis A, et al. Burn wound angiogenesis is increased by exogenously administered recombinant leptin in rats. Acta Cir Bras, 2008, 23(2): 118-124. |
47. | 文辉才, 巫国辉, 陈雯, 等. 局部应用瘦素对大鼠烫伤创面愈合的实验研究. 南方医科大学学报, 2012, 32(5): 703-706. |
48. | El-Deeb AM, Fansa HA, Wahba OM. The expression of leptin in oral wound healing in diabetes mellitus: An experimental study. Int J Health Sci (Qassim), 2018, 12(2): 22-25. |
49. | Umeki H, Tokuyama R, Ide S, et al. Leptin promotes wound healing in the oral mucosa. PLoS One, 2014, 9(7): e101984. |
50. | Tanigawa T, Watanabe T, Otani K, et al. Leptin promotes gastric ulcer healing via upregulation of vascular endothelial growth factor. Digestion, 2010, 81(2): 86-95. |
51. | Scherer PE, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem, 1995, 270(45): 26746-26749. |
52. | Bełtowski J. Adiponectin and resistin-new hormones of white adipose tissue. Med Sci Monit, 2003, 9(2): R55-R61. |
53. | Wang Y, Lam KS, Yau MH, et al. Post-translational modifications of adiponectin: mechanisms and functional implications. Biochem J, 2008, 409(3): 623-633. |
54. | Shibata S, Tada Y, Asano Y, et al. Adiponectin regulates cutaneous wound healing by promoting keratinocyte proliferation and migration via the ERK signaling pathway. J Immunol, 2012, 189(6): 3231-3241. |
55. | Salathia NS, Shi J, Zhang J, et al. An in vivo screen of secreted proteins identifies adiponectin as a regulator of murine cutaneous wound healing. J Invest Dermatol, 2013, 133(3): 812-821. |
56. | Ezure T, Amano S. Adiponectin and leptin up-regulate extracellular matrix production by dermal fibroblasts. Biofactors, 2007, 31(3-4): 229-236. |
57. | Ouchi N, Kobayashi H, Kihara S, et al. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J Biol Chem, 2004, 279(2): 1304-1309. |
58. | Nakamura N, Naruse K, Matsuki T, et al. Adiponectin promotes migration activities of endothelial progenitor cells via Cdc42/Rac1. FEBS Letters, 2009, 583(15): 2457-2463. |
59. | Shibata R, Sato K, Pimentel DR, et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med, 2005, 11(10): 1096-1103. |
60. | Liu S, Yin T, Wei X, et al. Downregulation of adiponectin induced by tumor necrosis factor α is involved in the aggravation of posttraumatic myocardial ischemia/reperfusion injury. Crit Care Med, 2011, 39(8): 1935-1943. |
61. | Cheng CF, Lian WS, Chen SH, et al. Protective effects of adiponectin against renal ischemia-reperfusion injury via prostacyclin-PPARα-heme oxgenase-1 signaling pathway. J Cell Physiol, 2012, 227(1): 239-249. |
62. | Nishimura M, Izumiya Y, Higuchi A, et al. Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase dependent mechanisms. Circulation, 2008, 117(2): 216-223. |
63. | Konter JM, Parker JL, Baez E, et al. Adiponectin attenuates lipopolysaccharide-induced acute lung injury through suppression of endothelial cell activation. J Immunol, 2012, 188(2): 854-863. |
64. | Yamashita H, Oh-Ishi S, Kizaki T, et al. Insulin stimulates the expression of basic fibroblast growth factor in rat brown adipocyte primary culture. Eur J Cell Biol, 1995, 68(1): 8-13. |
65. | Zizola C, Balañá M, Sandoval M, et al. Changes in IGF-I receptor and IGF-I mRNA during differentiation of 3T3-L1 preadipocytes. Biochimie, 2002, 84(10): 975-980. |
66. | Matsuzawa Y. The metabolic syndrome and adipocytokines. FEBS Letters, 2006, 580(12): 2917-2921. |
67. | Kosacka J, Nowicki M, Kacza J, et al. Adipocyte-derived angiopoietin-1 supports neurite outgrowth and synaptogenesis of sensory neurons. J Neurosci Res, 2006, 83(7): 1160-1169. |
68. | Herold C, Engeli S, Beckmann B, et al. Adipokine concentrations in lipoaspirates may have a role in wound healing. Indian J Plast Surg, 2017, 50(1): 56-63. |
69. | Pallua N, Pulsfort AK, Suschek C, et al. Content of the growth factors bFGF, IGF-1, VEGF, and PDGF-BB in freshly harvested lipoaspirate after centrifugation and incubation. Plast Reconstr Surg, 2009, 123(3): 826-833. |
70. | Morimoto N, Yoshimura K, Niimi M, et al. An exploratory clinical trial for combination wound therapy with a novel medical matrix and fibroblast growth factor in patients with chronic skin ulcers: a study protocol. Am J Transl Res, 2012, 4(1): 52-59. |
71. | Steiling H, Werner S. Fibroblast growth factors: key players in epithelial morphogenesis, repair and cytoprotection. Curr Opin Biotechnol, 2003, 14(5): 533-537. |
72. | Stunova A, Vistejnova L. Dermal fibroblasts-A heterogeneous population with regulatory function in wound healing. Cytokine Growth Factor Rev, 2018, 39: 137-150. |
73. | Sarkanen JR, Kaila V, Mannerström B, et al. Human adipose tissue extract induces angiogenesis and adipogenesis in vitro. Tissue Eng Part A, 2012, 18(1-2): 17. |
74. | Sarkanen JR, Ruusuvuori P, Kuokkanen H, et al. Bioactive acellular implant induces angiogenesis and adipogenesis and sustained soft tissue restoration in vivo. Tissue Eng Part A, 2012, 18(23-24): 2568-2580. |
75. | Lopez J, Huttala O, Sarkanen JR, et al. Cytokine-rich adipose tissue extract production from water-assisted lipoaspirate: Methodology for clinical use. Biores Open Access, 2016, 5(1): 269-278. |
76. | Bellei B, Migliano E, Tedesco M, et al. Adipose tissue-derived extracellular fraction characterization: biological and clinical considerations in regenerative medicine. Stem Cell Res Ther, 2018, 9(1): 207. |
77. | Fu X, Fang L, Li H, et al. Adipose tissue extract enhances skin wound healing. Wound Repair Regen, 2007, 15(4): 540-548. |
78. | Kober J, Gugerell A, Schmid M, et al. Wound healing effect of conditioned media obtained from adipose tissue on human skin cells: A comparative in vitro study. Ann Plast Surg, 2016, 77(2): 156-163. |
79. | López JF, Sarkanen JR, Huttala O, et al. Adipose tissue extract shows potential for wound healing: in vitro proliferation and migration of cell types contributing to wound healing in the presence of adipose tissue preparation and platelet rich plasma. Cytotechnology, 2018, 70(4): 1193-1204. |
80. | Aoki N, Jin-No S, Nakagawa Y, et al. Identification and characterization of microvesicles secreted by 3T3-L1 adipocytes: redox- and hormone-dependent induction of milk fat globule-epidermal growth factor 8-associated microvesicles. Endocrinology, 2013, 154(11): 4437. |
81. | Müller G, Jung C, Straub J, et al. Induced release of membrane vesicles from rat adipocytes containing glycosylphosphatidylinositol-anchored microdomain and lipid droplet signalling proteins. Cell Signal, 2009, 21(2): 324-338. |
82. | Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles, 2013, 2: 1-3. |
83. | Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem, 1987, 262(19): 9412-9420. |
84. | Liang X, Zhang L, Wang S, et al. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci, 2016, 129(11): 2182-2189. |
85. | Narayanan R, Huang CC, Ravindran S. Hijacking the cellular mail: Exosome mediated differentiation of mesenchymal stem cells. Stem Cells Int, 2016, 2016: 3808674. |
86. | Hu L, Wang J, Zhou X, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep, 2016, 6: 32993. |
87. | Zhang Y, Yu M, Dai M, et al. miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2. J Cell Sci, 2017, 130(6): 1158-1168. |
88. | Connolly KD, Guschina IA, Yeung V, et al. Characterisation of adipocyte-derived extracellular vesicles released pre- and post-adipogenesis. J Extracell Vesicles, 2015, 4: 29159. |
89. | Zhang Y, Yu M, Zhao X, et al. Optimizing adipose tissue extract isolation with stirred suspension culture. Connect Tissue Res, 2019, 60(2): 178-188. |
90. | Dai M, Yu M, Zhang Y, et al. Exosome-like vesicles derived from adipose tissue provide biochemical cues for adipose tissue regeneration. Tissue Engineering Part A, 2017, 23(21-22): 1221-1230. |
- 1. Tricco AC, Cogo E, Isaranuwatchai W, et al. A systematic review of cost-effectiveness analyses of complex wound interventions reveals optimal treatments for specific wound types. BMC Med, 2015, 13(1): 90.
- 2. Powers JG, Higham C, Broussard K, et al. Wound healing and treating wounds: Chronic wound care and management. J Am Acad Dermatol, 2016, 74(4): 607-625.
- 3. Klein J, Permana PA, Owecki M, et al. What are subcutaneous adipocytes really good for? Exp Dermatol, 2007, 16(1): 45-47.
- 4. Scherer PE. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes, 2006, 55(6): 1537-1545.
- 5. Romacho T, Elsen M, Röhrborn D, et al. Adipose tissue and its role in organ crosstalk. Acta Physiol (Oxf), 2014, 210(4): 733-753.
- 6. Ouchi N, Parker JL, Lugus JJ, et al. Adipokines in inflammation and metabolic disease. Nat Rev Immunol, 2011, 11(2): 85-97.
- 7. Rodeheffer MS, Birsoy K, Friedman JM. Identification of white adipocyte progenitor cells in vivo. Cell, 2008, 135(2): 240.
- 8. Tang W, Zeve D, Suh JM, et al. White fat progenitor cells reside in the adipose vasculature. Science, 2008, 322(5901): 583-586.
- 9. Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M, et al. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy, 2006, 8(2): 166-177.
- 10. Kim WS, Park BS, Sung JH. The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin Biol Ther, 2009, 9(7): 879-887.
- 11. 熊佳超, 宋建星. 脂肪来源干细胞治疗难愈性创面的研究进展. 中国修复重建外科杂志, 2018, 32(4): 457-461.
- 12. Sun M, He Y, Zhou T, et al. Adipose extracellular matrix/stromal vascular fraction gel secretes angiogenic factors and enhancesskin wound healing in a murine model. Biomed Res Int, 2017, 2017(1): 3105780.
- 13. Yao Y, Dong Z, Liao Y, et al. Adipose extracellular matrix/stromal vascular fraction gel: a novel adipose tissue-derived injectable for stem cell therapy. Plastic Reconstr Surg, 2017, 139(4): 867-879.
- 14. Hoy AJ, Balaban S, Saunders DN. Adipocyte-tumor cell metabolic crosstalk in breast cancer. Trends Mol Med, 2017, 23(5): 381-392.
- 15. Maurizi G, Della GL, Maurizi A, et al. Adipocytes properties and crosstalk with immune system in obesity-related inflammation. J Cellular Physiology, 2018, 233(1): 88-97.
- 16. Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr, 2004, 92(3): 347-355.
- 17. Schmidt BA, Horsley V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development, 2013, 140(7): 1517-1527.
- 18. Guerrero-Juarez CF, Plikus MV. Emerging nonmetabolic functions of skin fat. Nature Reviews Endocrinology, 2018, 14: 163-173.
- 19. Plikus MV, Guerrero-Juarez CF, Ito M, et al. Regeneration of fat cells from myofibroblasts during wound healing. Science, 2017, 355(6326): 748-752.
- 20. Rivera-Gonzalez G, Shook B, Horsley V. Adipocytes in skin health and disease. Cold Spring Harb Perspect Med, 2014, 4(3): a015271.
- 21. Buchon N, Silverman N, Cherry S. Immunity in drosophila melanogaster——from microbial recognition to whole-organism physiology. Nat Rev Immunol, 2014, 14(12): 796-810.
- 22. Zhang LJ, Guerrero-Juarez CF, Hata T, et al. Innate immunity. Dermal adipocytes protect against invasive. Staphylococcus aureus skin infection. Science, 2015, 347(6217): 67-71.
- 23. Franz A, Wood W, Martin P. Fat body cells are motile and actively migrate to wounds to drive repair and prevent infection. Dev Cell, 2018, 44(4): 460-470.e3.
- 24. Mariman EC, Wang P. Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell Mol Life Sci, 2010, 67(8): 1277-1292.
- 25. Pierleoni C, Verdenelli F, Castellucci M, et al. Fibronectins and basal lamina molecules expression in human subcutaneous white adipose tissue. Eur J Histochem, 1998, 42(3): 183-188.
- 26. Louis F, Pannetier P, Souguir Z, et al. A biomimetic hydrogel functionalized with adipose ECM components as a microenvironment for the 3D culture of human and murine adipocytes. Biotechnology & Bioengineering, 2017, 114(8): 1813-1824.
- 27. Flynn LE. The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials, 2010, 31(17): 4715-4724.
- 28. Dong J, Yu M, Zhang Y, et al. Recent developments and clinical potential on decellularized adipose tissue. J Biomed Mater Res A, 2018, 106(9): 2563-2574.
- 29. Shahin TB, Vaishnav KV, Watchman M, et al. Tissue augmentation with allograft adipose matrix for the diabetic foot in remission. Plast Reconstr Surg Glob Open, 2017, 5(10): e1555.
- 30. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol, 2005, 115(5): 911-919.
- 31. Mohamed-Ali V, Pinkney JH, Coppack SW. Adipose tissue as an endocrine and paracrine organ. Int J Obes Relat Metab Disord, 1998, 22(12): 1145-1158.
- 32. Masuzaki H, Ogawa Y, Isse N, et al. Human obese gene expression. Adipocyte-specific expression and regional differences in the adipose tissue. Diabetes, 1995, 44(7): 855-858.
- 33. Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature, 1994, 372(6505): 425-432.
- 34. Masuzaki H, Ogawa Y, Sagawa N, et al. Nonadipose tissue production of leptin: leptin as a novel placenta-derived hormone in humans. Nat Med, 1997, 3(9): 1029-1033.
- 35. Bado A, Levasseur S, Attoub S, et al. The stomach is a source of leptin. Nature, 1998, 394(6695): 790-793.
- 36. Wang J, Liu R, Hawkins M, et al. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature, 1998, 393(6686): 684-688.
- 37. Morash B, Li A, Murphy PR, et al. Leptin gene expression in the brain and pituitary gland. Endocrinology, 1999, 140(12): 5995-5998.
- 38. Frank S, Stallmeyer B, Kampfer H, et al. Leptin enhances wound re-epithelialization and constitutes a direct function of leptin in skin repair. J Clin Invest, 2000, 106(4): 501-509.
- 39. Ring BD, Scully S, Davis CR, et al. Systemically and topically administered leptin both accelerate wound healing in diabetic ob/ob mice. Endocrinology, 2000, 141(1): 446-449.
- 40. Park HY, Kwon HM, Lim HJ, et al. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med, 2001, 33(2): 95-102.
- 41. Sierra-Honigmann MR, Nath AK, Murakami C, et al. Biological action of leptin as an angiogenic factor. Science, 1998, 281(5383): 1683-1686.
- 42. Stallmeyer B, Kämpfer H, Podda M, et al. A novel keratinocyte mitogen: regulation of leptin and its functional receptor in skin repair. J Invest Dermatol, 2001, 117(1): 98-105.
- 43. Tadokoro S, Ide S, Tokuyama R, et al. Leptin promotes wound healing in the skin. PLoS One, 2015, 10(3): e0121242.
- 44. 李培兵, 金宏, 刘佃辛, 等. 瘦素促进皮肤创伤大鼠胶原合成的实验研究. 中国应用生理学杂志, 2011, 27(1): 72-74.
- 45. Goren I, Kämpfer H, Podda M, et al. Leptin and wound inflammation in diabetic ob/ob mice: differential regulation of neutrophil and macrophage influx and a potential role for the scab as a sink for inflammatory cells and mediators. Diabetes, 2003, 52(11): 2821-2832.
- 46. Liapaki I, Anagnostoulis S, Karayiannakis A, et al. Burn wound angiogenesis is increased by exogenously administered recombinant leptin in rats. Acta Cir Bras, 2008, 23(2): 118-124.
- 47. 文辉才, 巫国辉, 陈雯, 等. 局部应用瘦素对大鼠烫伤创面愈合的实验研究. 南方医科大学学报, 2012, 32(5): 703-706.
- 48. El-Deeb AM, Fansa HA, Wahba OM. The expression of leptin in oral wound healing in diabetes mellitus: An experimental study. Int J Health Sci (Qassim), 2018, 12(2): 22-25.
- 49. Umeki H, Tokuyama R, Ide S, et al. Leptin promotes wound healing in the oral mucosa. PLoS One, 2014, 9(7): e101984.
- 50. Tanigawa T, Watanabe T, Otani K, et al. Leptin promotes gastric ulcer healing via upregulation of vascular endothelial growth factor. Digestion, 2010, 81(2): 86-95.
- 51. Scherer PE, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem, 1995, 270(45): 26746-26749.
- 52. Bełtowski J. Adiponectin and resistin-new hormones of white adipose tissue. Med Sci Monit, 2003, 9(2): R55-R61.
- 53. Wang Y, Lam KS, Yau MH, et al. Post-translational modifications of adiponectin: mechanisms and functional implications. Biochem J, 2008, 409(3): 623-633.
- 54. Shibata S, Tada Y, Asano Y, et al. Adiponectin regulates cutaneous wound healing by promoting keratinocyte proliferation and migration via the ERK signaling pathway. J Immunol, 2012, 189(6): 3231-3241.
- 55. Salathia NS, Shi J, Zhang J, et al. An in vivo screen of secreted proteins identifies adiponectin as a regulator of murine cutaneous wound healing. J Invest Dermatol, 2013, 133(3): 812-821.
- 56. Ezure T, Amano S. Adiponectin and leptin up-regulate extracellular matrix production by dermal fibroblasts. Biofactors, 2007, 31(3-4): 229-236.
- 57. Ouchi N, Kobayashi H, Kihara S, et al. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J Biol Chem, 2004, 279(2): 1304-1309.
- 58. Nakamura N, Naruse K, Matsuki T, et al. Adiponectin promotes migration activities of endothelial progenitor cells via Cdc42/Rac1. FEBS Letters, 2009, 583(15): 2457-2463.
- 59. Shibata R, Sato K, Pimentel DR, et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med, 2005, 11(10): 1096-1103.
- 60. Liu S, Yin T, Wei X, et al. Downregulation of adiponectin induced by tumor necrosis factor α is involved in the aggravation of posttraumatic myocardial ischemia/reperfusion injury. Crit Care Med, 2011, 39(8): 1935-1943.
- 61. Cheng CF, Lian WS, Chen SH, et al. Protective effects of adiponectin against renal ischemia-reperfusion injury via prostacyclin-PPARα-heme oxgenase-1 signaling pathway. J Cell Physiol, 2012, 227(1): 239-249.
- 62. Nishimura M, Izumiya Y, Higuchi A, et al. Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase dependent mechanisms. Circulation, 2008, 117(2): 216-223.
- 63. Konter JM, Parker JL, Baez E, et al. Adiponectin attenuates lipopolysaccharide-induced acute lung injury through suppression of endothelial cell activation. J Immunol, 2012, 188(2): 854-863.
- 64. Yamashita H, Oh-Ishi S, Kizaki T, et al. Insulin stimulates the expression of basic fibroblast growth factor in rat brown adipocyte primary culture. Eur J Cell Biol, 1995, 68(1): 8-13.
- 65. Zizola C, Balañá M, Sandoval M, et al. Changes in IGF-I receptor and IGF-I mRNA during differentiation of 3T3-L1 preadipocytes. Biochimie, 2002, 84(10): 975-980.
- 66. Matsuzawa Y. The metabolic syndrome and adipocytokines. FEBS Letters, 2006, 580(12): 2917-2921.
- 67. Kosacka J, Nowicki M, Kacza J, et al. Adipocyte-derived angiopoietin-1 supports neurite outgrowth and synaptogenesis of sensory neurons. J Neurosci Res, 2006, 83(7): 1160-1169.
- 68. Herold C, Engeli S, Beckmann B, et al. Adipokine concentrations in lipoaspirates may have a role in wound healing. Indian J Plast Surg, 2017, 50(1): 56-63.
- 69. Pallua N, Pulsfort AK, Suschek C, et al. Content of the growth factors bFGF, IGF-1, VEGF, and PDGF-BB in freshly harvested lipoaspirate after centrifugation and incubation. Plast Reconstr Surg, 2009, 123(3): 826-833.
- 70. Morimoto N, Yoshimura K, Niimi M, et al. An exploratory clinical trial for combination wound therapy with a novel medical matrix and fibroblast growth factor in patients with chronic skin ulcers: a study protocol. Am J Transl Res, 2012, 4(1): 52-59.
- 71. Steiling H, Werner S. Fibroblast growth factors: key players in epithelial morphogenesis, repair and cytoprotection. Curr Opin Biotechnol, 2003, 14(5): 533-537.
- 72. Stunova A, Vistejnova L. Dermal fibroblasts-A heterogeneous population with regulatory function in wound healing. Cytokine Growth Factor Rev, 2018, 39: 137-150.
- 73. Sarkanen JR, Kaila V, Mannerström B, et al. Human adipose tissue extract induces angiogenesis and adipogenesis in vitro. Tissue Eng Part A, 2012, 18(1-2): 17.
- 74. Sarkanen JR, Ruusuvuori P, Kuokkanen H, et al. Bioactive acellular implant induces angiogenesis and adipogenesis and sustained soft tissue restoration in vivo. Tissue Eng Part A, 2012, 18(23-24): 2568-2580.
- 75. Lopez J, Huttala O, Sarkanen JR, et al. Cytokine-rich adipose tissue extract production from water-assisted lipoaspirate: Methodology for clinical use. Biores Open Access, 2016, 5(1): 269-278.
- 76. Bellei B, Migliano E, Tedesco M, et al. Adipose tissue-derived extracellular fraction characterization: biological and clinical considerations in regenerative medicine. Stem Cell Res Ther, 2018, 9(1): 207.
- 77. Fu X, Fang L, Li H, et al. Adipose tissue extract enhances skin wound healing. Wound Repair Regen, 2007, 15(4): 540-548.
- 78. Kober J, Gugerell A, Schmid M, et al. Wound healing effect of conditioned media obtained from adipose tissue on human skin cells: A comparative in vitro study. Ann Plast Surg, 2016, 77(2): 156-163.
- 79. López JF, Sarkanen JR, Huttala O, et al. Adipose tissue extract shows potential for wound healing: in vitro proliferation and migration of cell types contributing to wound healing in the presence of adipose tissue preparation and platelet rich plasma. Cytotechnology, 2018, 70(4): 1193-1204.
- 80. Aoki N, Jin-No S, Nakagawa Y, et al. Identification and characterization of microvesicles secreted by 3T3-L1 adipocytes: redox- and hormone-dependent induction of milk fat globule-epidermal growth factor 8-associated microvesicles. Endocrinology, 2013, 154(11): 4437.
- 81. Müller G, Jung C, Straub J, et al. Induced release of membrane vesicles from rat adipocytes containing glycosylphosphatidylinositol-anchored microdomain and lipid droplet signalling proteins. Cell Signal, 2009, 21(2): 324-338.
- 82. Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles, 2013, 2: 1-3.
- 83. Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem, 1987, 262(19): 9412-9420.
- 84. Liang X, Zhang L, Wang S, et al. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci, 2016, 129(11): 2182-2189.
- 85. Narayanan R, Huang CC, Ravindran S. Hijacking the cellular mail: Exosome mediated differentiation of mesenchymal stem cells. Stem Cells Int, 2016, 2016: 3808674.
- 86. Hu L, Wang J, Zhou X, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep, 2016, 6: 32993.
- 87. Zhang Y, Yu M, Dai M, et al. miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2. J Cell Sci, 2017, 130(6): 1158-1168.
- 88. Connolly KD, Guschina IA, Yeung V, et al. Characterisation of adipocyte-derived extracellular vesicles released pre- and post-adipogenesis. J Extracell Vesicles, 2015, 4: 29159.
- 89. Zhang Y, Yu M, Zhao X, et al. Optimizing adipose tissue extract isolation with stirred suspension culture. Connect Tissue Res, 2019, 60(2): 178-188.
- 90. Dai M, Yu M, Zhang Y, et al. Exosome-like vesicles derived from adipose tissue provide biochemical cues for adipose tissue regeneration. Tissue Engineering Part A, 2017, 23(21-22): 1221-1230.