1. |
Binder DK, Schmidt MH, Weinstein PR. Lumbar spinal stenosis. Semin Neurol, 2002, 22(2): 157-166.
|
2. |
Gu J, Liu X, Wang QX, et al. Angiotensin Ⅱ increases CTGF expression via MAPKs/TGF-β1/TRAF6 pathway in atrial fibroblasts. Exp Cell Res, 2012, 318(16): 2105-2115.
|
3. |
Maezawa Y, Baba H, Uchida K, et al. Ligamentum flavum hematoma in the thoracic spine. Clin Imaging, 2001, 25(4): 265-267.
|
4. |
Behm B, Babilas P, Landthaler M, et al. Cytokines, chemokines and growth factors in wound healing. J Eur Acad Dermatol Venereol, 2012, 26(7): 812-820.
|
5. |
Zhong ZM, Zha DS, Xiao WD, et al. Hypertrophy of ligamentum flavum in lumbar spine stenosis associated with the increased expression of connective tissue growth factor. J Orthop Res, 2011, 29(10): 1592-1597.
|
6. |
Amudong A, Muheremu A, Abudourexiti T. Hypertrophy of the ligamentum flavum and expression of transforming growth factor beta. J Int Med Res, 2017, 45(6): 2036-2041.
|
7. |
方清清, 李志忠, 周建, 等. 信号分子 p38 参与低频脉冲电磁场促进成骨细胞矿化成熟的实验研究. 中国修复重建外科杂志, 2016, 30(10): 1238-1243.
|
8. |
New L, Han J. The p38 MAP kinase pathway and its biological function. Trends Cardiovasc Med, 1998, 8(5): 220-228.
|
9. |
Hale KK, Trollinger D, Rihanek M, et al. Differential expression and activation of p38 mitogen-activated protein kinase alpha, beta, gamma, and delta in inflammatory cell lineages. J Immunol, 1999, 162(7): 4246-4252.
|
10. |
Specchia N, Pagnotta A, Gigante A, et al. Characterization of cultured human ligamentum flavum cells in lumbar spine stenosis. J Orthop Res, 2001, 19(2): 294-300.
|
11. |
Zhong ZM, Chen JT. Phenotypic characterization of ligamentum flavum cells from patients with ossification of ligamentum flavum. Yonsei Med J, 2009, 50(3): 375-379.
|
12. |
Zhang M, Fraser D, Phillips A. ERK, p38, and Smad signaling pathways differentially regulate transforming growth factor-beta1 autoinduction in proximal tubular epithelial cells. Am J Pathol, 2006, 169(4): 1282-1293.
|
13. |
Holmes A, Abraham DJ, Sa S, et al. CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. J Biol Chem, 2001, 276(14): 10594-10601.
|
14. |
Du QC, Zhang DZ, Chen XJ, et al. The effect of p38MAPK on cyclic stretch in human facial hypertrophic scar fibroblast differentiation. PLoS One, 2013, 8(10): e75635.
|
15. |
Morales MG, Vazquez Y, Acuña MJ, et al. Angiotensin Ⅱ-induced pro-fibrotic effects require p38MAPK activity and transforming growth factor beta 1 expression in skeletal muscle cells. Int J Biochem Cell Biol, 2012, 44(11): 1993-2002.
|
16. |
Park JB, Chang H, Lee JK. Quantitative analysis of transforming growth factor-beta 1 in ligamentum flavum of lumbar spinal stenosis and disc herniation. Spine (Phila Pa 1976), 2001, 26(21): E492-E495.
|
17. |
Han J, Lee JD, Bibbs L, et al. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science, 1994, 265(5173): 808-811.
|
18. |
Jiang Y, Gram H, Zhao M, et al. Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38delta. J Biol Chem, 1997, 272(48): 30122-30128.
|
19. |
Mavropoulos A, Orfanidou T, Liaskos C, et al. p38 MAPK signaling in pemphigus: implications for skin autoimmunity. Autoimmune Dis, 2013, 2013: 728529.
|
20. |
Whitmarsh AJ. A central role for p38 MAPK in the early transcriptional response to stress. BMC Biol, 2010, 8: 47.
|