1. |
才越, 王绪凯. 骨组织工程化构建中复合支架的研究进展. 口腔生物医学, 2016, 7(4): 200-203.
|
2. |
王福科, 张红, 李彦林, 等. 联合培养血管内皮细胞与脂肪干细胞构建组织工程骨异位成骨. 中国修复重建外科杂志, 2019, 33(10): 1310-1319.
|
3. |
Arthur A, Zannettino A, Gronthos S. The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol, 2009, 218(2): 237-245.
|
4. |
赵斌, 马剑雄, 马信龙. 组织工程周围神经血管化研究进展. 中国修复重建外科杂志, 2019, 33(8): 1029-1032.
|
5. |
Weng Z, Wang C, Zhang C, et al. All-trans retinoic acid promotes osteogenic differentiation and bone consolidation in a rat distraction osteogenesis model. Calcif Tissue Int, 2019, 104(3): 320-330.
|
6. |
Pourjafar M, Saidijam M, Mansouri K, et al. All-trans retinoic acid preconditioning enhances proliferation, angiogenesis and migration of mesenchymal stem cell in vitro and enhances wound repair in vivo. Cell Prolif, 2017, 50(1).doi: 10.1111/cpr.12315.
|
7. |
刘子铭. HIF1α 上调 Runx2 促进 BMP9 诱导的间充质干细胞成骨分化与血管形成机制研究. 重庆: 重庆医科大学, 2019.
|
8. |
Siddikuzzaman, Guruvayoorappan C, Berlin Grace VM. All trans retinoic acid and cancer. Immunopharmacol Immunotoxicol, 2011, 33(2): 241-249.
|
9. |
Clagett-Dame M, McNeill EM, Muley PD. Role of all-trans retinoic acid in neurite outgrowth and axonal elongation. J Neurobiol, 2006, 66(7): 739-756.
|
10. |
Vaughan MR, Pippin JW, Griffin SV, et al. ATRA induces podocyte differentiation and alters nephrin and podocin expression in vitro and in vivo. Kidney Int, 2005, 68(1): 133-144.
|
11. |
Zhang W, Deng ZL, Chen L, et al. Retinoic acids potentiate BMP9-induced osteogenic differentiation of mesenchymal progenitor cells. PLoS One, 2010, 5(7): e11917.
|
12. |
Yan Q, Li Y, Cheng N, et al. Effect of retinoic acid on the function of lipopolysaccharide-stimulated bone marrow stromal cells grown on titanium surfaces. Inflamma Res, 2015, 64(1): 63-70.
|
13. |
Henning P, Conaway HH, Lerner UH. Retinoid receptors in bone and their role in bone remodeling. Front Endocrinol (Lausanne), 2015, 6: 31.
|
14. |
Wan DC, Siedhoff MT, Kwan MD, et al. Refining retinoic acid stimulation for osteogenic differentiation of murine adipose-derived adult stromal cells. Tissue Eng, 2007, 13(7): 1623-1631.
|
15. |
Song HM, Nacamuli RP, Xia W, et al. High-dose retinoic acid modulates rat calvarial osteoblast biology. J Cell Physiol, 2005, 202(1): 255-262.
|
16. |
Feskanich D, Singh V, Willett WC, et al. Vitamin A intake and hip fractures among postmenopausal women. JAMA, 2002, 287(1): 47-54.
|
17. |
Michaëlsson K, Lithell H, Vessby B, et al. Serum retinol levels and the risk of fracture. N Engl J Med, 2003, 348(4): 287-294.
|
18. |
Iba K, Chiba H, Yamashita T, et al. Phase-independent inhibition by retinoic acid of mineralization correlated with loss of tetranectin expression in a human osteoblastic cell line. Cell Struct Funct, 2001, 26(4): 227-233.
|
19. |
Wiper-Bergeron N, St-Louis C, Lee JM. CCAAT/Enhancer binding protein beta abrogates retinoic acid-induced osteoblast differentiation via repression of Runx2 transcription. Mol Endocrinol, 2007, 21(9): 2124-2135.
|
20. |
Hisada K, Hata K, Ichida F, et al. Retinoic acid regulates commitment of undifferentiated mesenchymal stem cells into osteoblasts and adipocytes. J Bone Miner Metab, 2013, 31(1): 53-63.
|
21. |
Wan DC, Shi YY, Nacamuli RP, et al. Osteogenic differentiation of mouse adipose-derived adult stromal cells requires retinoic acid and bone morphogenetic protein receptor typeⅠB signaling. Proc Natl Acad Sci U S A, 2006, 103(33): 12335-12340.
|
22. |
Jabalee J, Franz-Odendaal TA. Vascular endothelial growth factor signaling affects both angiogenesis and osteogenesis during the development of scleral ossicles. Dev Biol, 2015, 406(1): 52-62.
|
23. |
Street J, Bao M, deGuzman L, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A, 2002, 99(15): 9656-9661.
|
24. |
Liu Y, Berendsen AD, Jia S, et al. Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J Clin Invest, 2012, 122(9): 3101-3113.
|
25. |
Chung R, Foster BK, Xian CJ. The potential role of VEGF-induced vascularisation in the bony repair of injured growth plate cartilage. J Endocrinol, 2014, 221(1): 63-75.
|