1. |
欧栓机, 齐勇, 孙鸿涛, 等. 经皮微创胫骨截骨横向骨搬移术治疗糖尿病足. 中国矫形外科杂志, 2018, 26(15): 1385-1389.
|
2. |
花奇凯, 秦泗河, 赵良军, 等. Ilizarov 技术胫骨横向骨搬移术治疗糖尿病足. 中国矫形外科杂志, 2017, 25(4): 303-307.
|
3. |
王斌, 刘伟, 霍永新, 等. 股-股动脉旁路移植联合胫骨横向骨搬移术治疗下肢动脉硬化闭塞症或合并糖尿病足. 中国修复重建外科杂志, 2018, 32(12): 1576-1580.
|
4. |
镇普祥, 陈炎, 高伟, 等. 应用 Ilizarov 技术胫骨横向骨搬移术治疗合并全身性炎症反应综合征的重度糖尿病足. 中国修复重建外科杂志, 2018, 32(10): 1261-1266.
|
5. |
Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest, 2007, 117(5): 1219-1222.
|
6. |
Tsang MW, Wong WK, Hung CS, et al. Human epidermal growth factor enhances healing of diabetic foot ulcers. Diabetes Care, 2003, 26(6): 1856-1861.
|
7. |
Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: Part Ⅱ. The influence of the rate and frequency of distraction. Clin Orthop Relat Res, 1989, (239): 263-285.
|
8. |
Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res, 1989, (238): 249-281.
|
9. |
Rafehi H, El-Osta A, Karagiannis TC. Epigenetic mechanisms in the pathogenesis of diabetic foot ulcers. J Diabetes Complications, 2012, 26(6): 554-561.
|
10. |
Stefanini MO, Wu FT, Mac GF, et al. A compartment model of VEGF distribution in blood, healthy and diseased tissues. BMC Syst Biol, 2008, 2: 77.
|
11. |
Maione AG, Brudno Y, Stojadinovic O, et al. Three-dimensional human tissue models that incorporate diabetic foot ulcer-derived fibroblasts mimic in vivo features of chronic wounds. Tissue Eng Part C Methods, 2015, 21(5): 499-508.
|
12. |
Przybylski M. A review of the current research on the role of bFGF and VEGF in angiogenesis. J Wound Care, 2009, 18(12): 516-519.
|
13. |
Tiaka EK, Papanas N, Manolakis AC, et al. Epidermal growth factor in the treatment of diabetic foot ulcers: an update. Perspect Vasc Surg Endovasc Ther, 2012, 24(1): 37-44.
|
14. |
Tuyet HL, Nguyen Quynh TT, Vo Hoang Minh H, et al. The efficacy and safety of epidermal growth factor in treatment of diabetic foot ulcers: the preliminary results. Int Wound J, 2009, 6(2): 159-166.
|
15. |
Barrientos S, Brem H, Stojadinovic O, et al. Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen, 2014, 22(5): 569-578.
|
16. |
Shah JM, Omar E, Pai DR, et al. Cellular events and biomarkers of wound healing. Indian J Plast Surg, 2012, 45(2): 220-228.
|
17. |
Bai Y, Bai L, Zhou J, et al. Sequential delivery of VEGF, FGF-2 and PDGF from the polymeric system enhance HUVECs angiogenesis in vitro and CAM angiogenesis. Cell Immunol, 2018, 323: 19-32.
|
18. |
Quinn TP, Schlueter M, Soifer SJ, et al. Cyclic mechanical stretch induces VEGF and FGF-2 expression in pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol, 2002, 282(5): L897-903.
|
19. |
Choi SM, Lee KM, Kim HJ, et al. Effects of structurally stabilized EGF and bFGF on wound healing in type Ⅰ and type Ⅱ diabetic mice. Acta Biomater, 2018, 66: 325-334.
|
20. |
Virakul S, Heutz JW, Dalm VA, et al. Basic FGF and PDGF-BB synergistically stimulate hyaluronan and IL-6 production by orbital fibroblasts. Mol Cell Endocrinol, 2016, 433: 94-104.
|