- Departmen of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;
Citation: SHI Kun, HUANG Yong, HUANG Leizhen, WANG Jingcheng, WANG Yuhan, FENG Ganjun, LIU Limin, SONG Yueming. Research progress of hydrogel used for regeneration of nucleus pulposus in intervertebral disc degeneration. Chinese Journal of Reparative and Reconstructive Surgery, 2020, 34(3): 275-284. doi: 10.7507/1002-1892.201907092 Copy
1. | Hoy D, March L, Brooks P, et al. The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis, 2014, 73(6): 968-974. |
2. | Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859): 2163-2196. |
3. | Cheung KM, Karppinen J, Chan D, et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976), 2009, 34(9): 934-940. |
4. | Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol, 2014, 10(1): 44-56. |
5. | Kadow T, Sowa G, Vo N, et al. Molecular basis of intervertebral disc degeneration and herniations: what are the important translational questions? Clin Orthop Relat Res, 2015, 473(6): 1903-1912. |
6. | Baliga S, Treon K, Craig NJ. Low back pain: current surgical approaches. Asian Spine J, 2015, 9(4): 645-657. |
7. | Radcliff KE, Kepler CK, Jakoi A, et al. Adjacent segment disease in the lumbar spine following different treatment interventions. Spine J, 2013, 13(10): 1339-1349. |
8. | Colombier P, Camus A, Lescaudron L, et al. Intervertebral disc regeneration: a great challenge for tissue engineers. Trends Biotechnol, 2014, 32(9): 433-435. |
9. | Frauchiger DA, Tekari A, Wöltje M, et al. A review of the application of reinforced hydrogels and silk as biomaterials for intervertebral disc repair. Eur Cell Mater, 2017, 34: 271-290. |
10. | Ghannam M, Jumah F, Mansour S, et al. Surgical anatomy, radiological features, and molecular biology of the lumbar intervertebral discs. Clin Anat, 2017, 30(2): 251-266. |
11. | Adams MA, Dolan P, McNally DS. The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology. Matrix Biol, 2009, 28(7): 384-389. |
12. | Nerurkar NL, Elliott DM, Mauck RL. Mechanical design criteria for intervertebral disc tissue engineering. J Biomech, 2010, 43(6): 1017-1030. |
13. | Cheung KMC, Al Ghazi S. Current understanding of low back pain and intervertebral disc degeneration: epidemiological perspectives and phenotypes for genetic studies. Current Orthopaedics, 2008, 22(4): 237-244. |
14. | Maroudas A, Stockwell RA, Nachemson A, et al. Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J Anat, 1975, 120(Pt 1): 113-130. |
15. | Malandrino A, Lacroix D, Hellmich C, et al. The role of endplate poromechanical properties on the nutrient availability in the intervertebral disc. Osteoarthritis Cartilage, 2014, 22(7): 1053-1060. |
16. | Chan SC, Ferguson SJ, Gantenbein-Ritter B. The effects of dynamic loading on the intervertebral disc. Eur Spine J, 2011, 20(11): 1796-1812. |
17. | Chen Z, Li X, Pan F, et al. A retrospective study: Does cigarette smoking induce cervical disc degeneration? Int J Surg, 2018, 53: 269-273. |
18. | MacGregor AJ, Andrew T, Sambrook PN, et al. Structural, psychological, and genetic influences on low back and neck pain: a study of adult female twins. Arthritis Rheum, 2004, 51(2): 160-167. |
19. | Molladavoodi S, McMorran J, Gregory D. Mechanobiology of annulus fibrosus and nucleus pulposus cells in intervertebral discs. Cell Tissue Res, 2019. [Epub ahead of print]. |
20. | Silagi ES, Shapiro IM, Risbud MV. Glycosaminoglycan synthesis in the nucleus pulposus: Dysregulation and the pathogenesis of disc degeneration. Matrix Biol, 2018, 71-7: 368-379. |
21. | Wang F, Cai F, Shi R, et al. Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration. Osteoarthritis Cartilage, 2016, 24(3): 398-408. |
22. | Yang S, Zhang F, Ma J, et al. Intervertebral disc ageing and degeneration: The antiapoptotic effect of oestrogen. Ageing Res Rev, 2020, 57: 100978. |
23. | 侯孝忠, 徐林飞, 易威威, 等. 内质网应激对吸烟诱导的髓核细胞凋亡与炎性反应的影响研究. 中国修复重建外科杂志, 2019, 33(6): 736-742. |
24. | Frapin L, Clouet J, Delplace V, et al. Lessons learned from intervertebral disc pathophysiology to guide rational design of sequential delivery systems for therapeutic biological factors. Adv Drug Deliv Rev, 2019, 149-150: 49-71. |
25. | Chen S, Liu S, Ma K, et al. TGF-β signaling in intervertebral disc health and disease. Osteoarthritis Cartilage, 2019, 27(8): 1109-1117. |
26. | Emanuel KS, Mader KT, Peeters M, et al. Early changes in the extracellular matrix of the degenerating intervertebral disc, assessed by Fourier transform infrared imaging. Osteoarthritis Cartilage, 2018, 26(10): 1400-1408. |
27. | Chen Z, Liu M, Zhang W, et al. miR-24-3p induces human intervertebral disc degeneration by targeting insulin-like growth factor binding protein 5 and the ERK signaling pathway. Life Sci, 2020. [Epub ahead of print]. |
28. | Ge J, Zhou Q, Niu J, et al. Melatonin protects intervertebral disc from degeneration by improving cell survival and function via activation of the ERK1/2 signaling pathway. Oxid Med Cell Longev, 2019, 2019: 5120275. |
29. | Huang Y, Peng Y, Sun J, et al. Nicotinamide phosphoribosyl transferase controls NLRP3 inflammasome activity through MAPK and NF-κB signaling in nucleus pulposus cells, as suppressed by melatonin. Inflammation, 2020. [Epub ahead of print]. |
30. | Li D, Wu Y, Wu Y, et al. HtrA1 upregulates the expression of ADAMTS-5 in HNPCs via the ERK/NF-κB/JNK signaling pathway. Am J Transl Res, 2019, 11(8): 5114-5121. |
31. | Tian D, Liu J, Chen L, et al. The protective effects of PI3K/Akt pathway on human nucleus pulposus mesenchymal stem cells against hypoxia and nutrition deficiency. J Orthop Surg Res, 2020, 15(1): 29. |
32. | Wei K, Dai J, Wang Z, et al. Oxymatrine suppresses IL-1β-induced degradation of the nucleus pulposus cell and extracellular matrix through the TLR4/NF-κB signaling pathway. Exp Biol Med (Maywood), 2020. [Epub ahead of print]. |
33. | Yao M, Zhang J, Li Z, et al. Marein protects human nucleus pulposus cells against high glucose-induced injury and extracellular matrix degradation at least partly by inhibition of ROS/NF-κB pathway. Int Immunopharmacol, 2020. [Epub ahead of print]. |
34. | Long J, Wang X, Du X, et al. JAG2/Notch2 inhibits intervertebral disc degeneration by modulating cell proliferation, apoptosis, and extracellular matrix. Arthritis Res Ther, 2019, 21(1): 213. |
35. | Huang YC, Leung VY, Lu WW, et al. The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc. Spine J, 2013, 13(3): 352-362. |
36. | Huang YC, Hu Y, Li Z, et al. Biomaterials for intervertebral disc regeneration: Current status and looming challenges. J Tissue Eng Regen Med, 2018, 12(11): 2188-2202. |
37. | Gilbert HTJ, Hodson N, Baird P, et al. Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel-3 as a potential therapeutic target. Sci Rep, 2016, 6: 37360. |
38. | Huang YC, Urban JP, Luk KD. Intervertebral disc regeneration: do nutrients lead the way? Nat Rev Rheumatol, 2014, 10(9): 461-566. |
39. | Chuah YJ, Peck Y, Lau JE, et al. Hydrogel based cartilaginous tissue regeneration: recent insights and technologies. Biomater Sci, 2017, 5(4): 613-631. |
40. | Zeng C, Yang Q, Zhu M, et al. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering. Mater Sci Eng C Mater Biol Appl, 2014, 37: 232-240. |
41. | Buser Z, Kuelling F, Liu J, et al. Biological and biomechanical effects of fibrin injection into porcine intervertebral discs. Spine (Phila Pa 1976), 2011, 36(18): E1201-E1209. |
42. | Chou AI, Nicoll SB. Characterization of photocrosslinked alginate hydrogels for nucleus pulposus cell encapsulation. J Biomed Mater Res A, 2009, 91(1): 187-194. |
43. | Huang B, Li CQ, Zhou Y, et al. Collagen Ⅱ/hyaluronan/chondroitin-6-sulfate tri-copolymer scaffold for nucleus pulposus tissue engineering. J Biomed Mater Res B Appl Biomater, 2010, 92(2): 322-331. |
44. | Huang B, Zhuang Y, Li CQ, et al. Regeneration of the intervertebral disc with nucleus pulposus cell-seeded collagen II/hyaluronan/chondroitin-6-sulfate tri-copolymer constructs in a rabbit disc degeneration model. Spine (Phila Pa 1976), 2011, 36(26): 2252-2259. |
45. | Roughley P, Hoemann C, DesRosiers E, et al. The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials, 2006, 27(3): 388-396. |
46. | Collin EC, Grad S, Zeugolis DI, et al. An injectable vehicle for nucleus pulposus cell-based therapy. Biomaterials, 2011, 32(11): 2862-2870. |
47. | Calderon L, Collin E, Velasco-Bayon D, et al. Type Ⅱ collagen-hyaluronan hydrogel—a step towards a scaffold for intervertebral disc tissue engineering. Eur Cell Mater, 2010, 20: 134-148. |
48. | Mizuno H, Roy AK, Vacanti CA, et al. Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement. Spine (Phila Pa 1976), 2004, 29(12): 1290-1298. |
49. | Bowles RD, Setton LA. Biomaterials for intervertebral disc regeneration and repair. Biomaterials, 2017, 129: 54-67. |
50. | Kondiah PJ, Choonara YE, Kondiah PP, et al. A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules, 2016, 21(11): pii: E1580. |
51. | Wismer N, Grad S, Fortunato G, et al. Biodegradable electrospun scaffolds for annulus fibrosus tissue engineering: effect of scaffold structure and composition on annulus fibrosus cells in vitro. Tissue Eng Part A, 2014, 20(3-4): 672-682. |
52. | Helen W, Merry CLR, Blaker JJ, et al. Three-dimensional culture of annulus fibrosus cells within PDLLA/Bioglass (R) composite foam scaffolds: Assessment of cell attachment, proliferation and extracellular matrix production. Biomaterials, 2007, 28(11): 2010-2020. |
53. | Mauth C, Bono E, Haas S, et al. Cell-seeded polyurethane-fibrin structures—a possible system for intervertebral disc regeneration. Eur Cell Mater, 2009, 18: 27-38. |
54. | Jeong CG, Francisco AT, Niu Z, et al. Screening of hyaluronic acid-poly (ethylene glycol) composite hydrogels to support intervertebral disc cell biosynthesis using artificial neural network analysis. Acta Biomater, 2014, 10(8): 3421-3430. |
55. | Selviaridis P, Foroglou N, Tsitlakidis A, et al. Long-term outcome after implantation of prosthetic disc nucleus device (PDN) in lumbar disc disease. Hippokratia, 2010, 14(3): 176-184. |
56. | 马远征, 薛海滨, 陈兴, 等. 人工髓核置换术治疗腰椎间盘病变的中远期随访结果. 中华外科杂志, 2008, 46(5): 350-353. |
57. | Allen MJ, Schoonmaker JE, Bauer TW, et al. Preclinical evaluation of a poly (vinyl alcohol) hydrogel implant as a replacement for the nucleus pulposus. Spine (Phila Pa 1976), 2004, 29(5): 515-523. |
58. | Lewis G. Nucleus pulposus replacement and regeneration/repair technologies: present status and future prospects. J Biomed Mater Res B Appl Biomater, 2012, 100(6): 1702-1720. |
59. | 梁航, 邓享誉, 邵增务. 椎间盘内源性干细胞在椎间盘组织修复再生中的研究进展. 中国修复重建外科杂志, 2017, 31(10): 1267-1272. |
60. | Clouet J, Fusellier M, Camus A, et al. Intervertebral disc regeneration: From cell therapy to the development of novel bioinspired endogenous repair strategies. Adv Drug Deliv Rev, 2019, 146: 306-324. |
61. | Wang H, Zhou Y, Huang B, et al. Utilization of stem cells in alginate for nucleus pulposus tissue engineering. Tissue Eng Part A, 2014, 20(5-6): 908-920. |
62. | Day AJ, de la Motte CA. Hyaluronan cross-linking: a protective mechanism in inflammation? Trends Immunol, 2005, 26(12): 637-643. |
63. | Henriksson HB, Hagman M, Horn M, et al. Investigation of different cell types and gel carriers for cell-based intervertebral disc therapy, in vitro and in vivo studies. J Tissue Eng Regen Med, 2012, 6(9): 738-747. |
64. | Halloran DO, Grad S, Stoddart M, et al. An injectable cross-linked scaffold for nucleus pulposus regeneration. Biomaterials, 2008, 29(4): 438-447. |
65. | Francisco AT, Mancino RJ, Bowles RD, et al. Injectable laminin-functionalized hydrogel for nucleus pulposus regeneration. Biomaterials, 2013, 34(30): 7381-7388. |
66. | Francisco AT, Hwang PY, Jeong CG, et al. Photocrosslinkable laminin-functionalized polyethylene glycol hydrogel for intervertebral disc regeneration. Acta Biomater, 2014, 10(3): 1102-1111. |
67. | Wan S, Borland S, Richardson SM, et al. Self-assembling peptide hydrogel for intervertebral disc tissue engineering. Acta Biomater, 2016, 46: 29-40. |
68. | Tao H, Zhang Y, Wang CF, et al. Biological evaluation of human degenerated nucleus pulposus cells in functionalized self-assembling peptide nanofiber hydrogel scaffold. Tissue Eng Part A, 2014, 20(11-12): 1621-1631. |
69. | Kumar D, Lyness A, Gerges I, et al. Stem cell delivery with polymer hydrogel for treatment of intervertebral disc degeneration: From 3D culture to design of the delivery device for minimally invasive therapy. Cell Transplant, 2016, 25(12): 2213-2220. |
70. | Moss IL, Gordon L, Woodhouse KA, et al. A novel thiol-modified hyaluronan and elastin-like polypetide composite material for tissue engineering of the nucleus pulposus of the intervertebral disc. Spine (Phila Pa 1976), 2011, 36(13): 1022-1029. |
71. | Mwale F, Iordanova M, Demers CN, et al. Biological evaluation of chitosan salts cross-linked to genipin as a cell scaffold for disk tissue engineering. Tissue Eng, 2005, 11(1-2): 130-140. |
72. | Gan Y, Li S, Li P, et al. A controlled release codelivery system of MSCs encapsulated in dextran/gelatin hydrogel with TGF-β3-loaded nanoparticles for nucleus pulposus regeneration. Stem Cells Int, 2016, 2016: 9042019. |
73. | Nair MB, Baranwal G, Vijayan P, et al. Composite hydrogel of chitosan-poly (hydroxybutyrate-co-valerate) with chondroitin sulfate nanoparticles for nucleus pulposus tissue engineering. Colloids Surf B Biointerfaces, 2015, 136: 84-92. |
74. | Ligorio C, Zhou M, Wychowaniec JK, et al. Graphene oxide containing self-assembling peptide hybrid hydrogels as a potential 3D injectable cell delivery platform for intervertebral disc repair applications. Acta Biomater, 2019, 92: 92-103. |
75. | Bertolo A, Ettinger L, Aebli N, et al. The in vitro effects of dexamethasone, insulin and triiodothyronine on degenerative human intervertebral disc cells under normoxic and hypoxic conditions. Eur Cell Mater, 2011, 21: 221-229. |
76. | Su WY, Chen YC, Lin FH. Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration. Acta Biomater, 2010, 6(8): 3044-3055. |
77. | Cheng YH, Yang SH, Lin FH. Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration. Biomaterials, 2011, 32(29): 6953-6961. |
78. | Pan Z, Sun H, Xie B, et al. Therapeutic effects of gefitinib-encapsulated thermosensitive injectable hydrogel in intervertebral disc degeneration. Biomaterials, 2018, 160: 56-68. |
79. | Ono Y, Ishizuka S, Knudson CB, et al. Chondroprotective effect of kartogenin on CD44-mediated functions in articular cartilage and chondrocytes. Cartilage, 2014, 5(3): 172-180. |
80. | Zhu Y, Tan J, Zhu H, et al. Development of kartogenin-conjugated chitosan-hyaluronic acid hydrogel for nucleus pulposus regeneration. Biomater Sci, 2017, 5(4): 784-791. |
81. | Yang X, Li X. Nucleus pulposus tissue engineering: a brief review. Eur Spine J, 2009, 18(11): 1564-1572. |
82. | Kennon JC, Awad ME, Chutkan N, et al. Current insights on use of growth factors as therapy for Intervertebral Disc Degeneration. Biomol Concepts, 2018, 9(1): 43-52. |
83. | Henry N, Clouet J, Fragale A, et al. Pullulan microbeads/Si-HPMC hydrogel injectable system for the sustained delivery of GDF-5 and TGF-β1: new insight into intervertebral disc regenerative medicine. Drug Deliv, 2017, 24(1): 999-1010. |
84. | Peeters M, Detiger SE, Karfeld-Sulzer LS, et al. BMP-2 and BMP-2/7 heterodimers conjugated to a fibrin/hyaluronic acid hydrogel in a large animal model of mild intervertebral disc degeneration. Biores Open Access, 2015, 4(1): 398-406. |
85. | Ehlicke F, Freimark D, Heil B, et al. Intervertebral disc regeneration: influence of growth factors on differentiation of human mesenchymal stem cells (hMSC). Int J Artif Organs, 2010, 33(4): 244-252. |
86. | Vadalà G, Russo F, Musumeci M, et al. Clinically relevant hydrogel-based on hyaluronic acid and platelet rich plasma as a carrier for mesenchymal stem cells: Rheological and biological characterization. J Orthop Res, 2017, 35(10): 2109-2116. |
87. | Bucher C, Gazdhar A, Benneker LM, et al. Nonviral gene delivery of growth and differentiation factor 5 to human mesenchymal stem cells injected into a 3D bovine intervertebral disc organ culture system. Stem Cells Int, 2013, 2013: 326828. |
88. | Feng G, Chen H, Li J, et al. Gene therapy for nucleus pulposus regeneration by heme oxygenase-1 plasmid DNA carried by mixed polyplex micelles with thermo-responsive heterogeneous coronas. Biomaterials, 2015, 52: 1-13. |
89. | Feng G, Zha Z, Huang Y, et al. Sustained and bioresponsive two-stage delivery of therapeutic miRNA via polyplex micelle-loaded injectable hydrogels for inhibition of intervertebral disc fibrosis. Adv Healthc Mater, 2018, 7(21): e1800623. |
90. | Zhu Y, Liang Y, Zhu H, et al. The generation and functional characterization of induced pluripotent stem cells from human intervertebral disc nucleus pulposus cells. Oncotarget, 2017, 8(26): 42700-42711. |
91. | Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384-388. |
92. | Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338. |
93. | Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun, 2016, 7: 11215. |
94. | He R, Liu P, Xie X, et al. circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a. J Exp Clin Cancer Res, 2017, 36(1): 145. |
95. | Song J, Wang HL, Song KH, et al. CircularRNA_104670 plays a critical role in intervertebral disc degeneration by functioning as a ceRNA. Exp Mol Med, 2018, 50(8): 94. |
96. | Wang X, Wang B, Zou M, et al. CircSEMA4B targets miR-431 modulating IL-1β-induced degradative changes in nucleus pulposus cells in intervertebral disc degeneration via Wnt pathway. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(11): 3754-3768. |
97. | Du L, Yang Q, Zhang J, et al. Engineering a biomimetic integrated scaffold for intervertebral disc replacement. Mater Sci Eng C Mater Biol Appl, 2019, 96: 522-529. |
98. | Bowles RD, Gebhard HH, Härtl R, et al. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine. Proc Natl Acad Sci U S A, 2011, 108(32): 13106-13111. |
99. | Park SH, Gil ES, Cho H, et al. Intervertebral disk tissue engineering using biphasic silk composite scaffolds. Tissue Eng Part A, 2012, 18(5-6): 447-458. |
100. | Gloria A, De Santis R, Ambrosio L, et al. A multi-component fiber-reinforced PHEMA-based hydrogel/HAPEX device for customized intervertebral disc prosthesis. J Biomater Appl, 2011, 25(8): 795-810. |
101. | Martin JT, Kim DH, Milby AH, et al. In vivo performance of an acellular disc-like angle ply structure (DAPS) for total disc replacement in a small animal model. J Orthop Res, 2017, 35(1): 23-31. |
- 1. Hoy D, March L, Brooks P, et al. The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis, 2014, 73(6): 968-974.
- 2. Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859): 2163-2196.
- 3. Cheung KM, Karppinen J, Chan D, et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976), 2009, 34(9): 934-940.
- 4. Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol, 2014, 10(1): 44-56.
- 5. Kadow T, Sowa G, Vo N, et al. Molecular basis of intervertebral disc degeneration and herniations: what are the important translational questions? Clin Orthop Relat Res, 2015, 473(6): 1903-1912.
- 6. Baliga S, Treon K, Craig NJ. Low back pain: current surgical approaches. Asian Spine J, 2015, 9(4): 645-657.
- 7. Radcliff KE, Kepler CK, Jakoi A, et al. Adjacent segment disease in the lumbar spine following different treatment interventions. Spine J, 2013, 13(10): 1339-1349.
- 8. Colombier P, Camus A, Lescaudron L, et al. Intervertebral disc regeneration: a great challenge for tissue engineers. Trends Biotechnol, 2014, 32(9): 433-435.
- 9. Frauchiger DA, Tekari A, Wöltje M, et al. A review of the application of reinforced hydrogels and silk as biomaterials for intervertebral disc repair. Eur Cell Mater, 2017, 34: 271-290.
- 10. Ghannam M, Jumah F, Mansour S, et al. Surgical anatomy, radiological features, and molecular biology of the lumbar intervertebral discs. Clin Anat, 2017, 30(2): 251-266.
- 11. Adams MA, Dolan P, McNally DS. The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology. Matrix Biol, 2009, 28(7): 384-389.
- 12. Nerurkar NL, Elliott DM, Mauck RL. Mechanical design criteria for intervertebral disc tissue engineering. J Biomech, 2010, 43(6): 1017-1030.
- 13. Cheung KMC, Al Ghazi S. Current understanding of low back pain and intervertebral disc degeneration: epidemiological perspectives and phenotypes for genetic studies. Current Orthopaedics, 2008, 22(4): 237-244.
- 14. Maroudas A, Stockwell RA, Nachemson A, et al. Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J Anat, 1975, 120(Pt 1): 113-130.
- 15. Malandrino A, Lacroix D, Hellmich C, et al. The role of endplate poromechanical properties on the nutrient availability in the intervertebral disc. Osteoarthritis Cartilage, 2014, 22(7): 1053-1060.
- 16. Chan SC, Ferguson SJ, Gantenbein-Ritter B. The effects of dynamic loading on the intervertebral disc. Eur Spine J, 2011, 20(11): 1796-1812.
- 17. Chen Z, Li X, Pan F, et al. A retrospective study: Does cigarette smoking induce cervical disc degeneration? Int J Surg, 2018, 53: 269-273.
- 18. MacGregor AJ, Andrew T, Sambrook PN, et al. Structural, psychological, and genetic influences on low back and neck pain: a study of adult female twins. Arthritis Rheum, 2004, 51(2): 160-167.
- 19. Molladavoodi S, McMorran J, Gregory D. Mechanobiology of annulus fibrosus and nucleus pulposus cells in intervertebral discs. Cell Tissue Res, 2019. [Epub ahead of print].
- 20. Silagi ES, Shapiro IM, Risbud MV. Glycosaminoglycan synthesis in the nucleus pulposus: Dysregulation and the pathogenesis of disc degeneration. Matrix Biol, 2018, 71-7: 368-379.
- 21. Wang F, Cai F, Shi R, et al. Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration. Osteoarthritis Cartilage, 2016, 24(3): 398-408.
- 22. Yang S, Zhang F, Ma J, et al. Intervertebral disc ageing and degeneration: The antiapoptotic effect of oestrogen. Ageing Res Rev, 2020, 57: 100978.
- 23. 侯孝忠, 徐林飞, 易威威, 等. 内质网应激对吸烟诱导的髓核细胞凋亡与炎性反应的影响研究. 中国修复重建外科杂志, 2019, 33(6): 736-742.
- 24. Frapin L, Clouet J, Delplace V, et al. Lessons learned from intervertebral disc pathophysiology to guide rational design of sequential delivery systems for therapeutic biological factors. Adv Drug Deliv Rev, 2019, 149-150: 49-71.
- 25. Chen S, Liu S, Ma K, et al. TGF-β signaling in intervertebral disc health and disease. Osteoarthritis Cartilage, 2019, 27(8): 1109-1117.
- 26. Emanuel KS, Mader KT, Peeters M, et al. Early changes in the extracellular matrix of the degenerating intervertebral disc, assessed by Fourier transform infrared imaging. Osteoarthritis Cartilage, 2018, 26(10): 1400-1408.
- 27. Chen Z, Liu M, Zhang W, et al. miR-24-3p induces human intervertebral disc degeneration by targeting insulin-like growth factor binding protein 5 and the ERK signaling pathway. Life Sci, 2020. [Epub ahead of print].
- 28. Ge J, Zhou Q, Niu J, et al. Melatonin protects intervertebral disc from degeneration by improving cell survival and function via activation of the ERK1/2 signaling pathway. Oxid Med Cell Longev, 2019, 2019: 5120275.
- 29. Huang Y, Peng Y, Sun J, et al. Nicotinamide phosphoribosyl transferase controls NLRP3 inflammasome activity through MAPK and NF-κB signaling in nucleus pulposus cells, as suppressed by melatonin. Inflammation, 2020. [Epub ahead of print].
- 30. Li D, Wu Y, Wu Y, et al. HtrA1 upregulates the expression of ADAMTS-5 in HNPCs via the ERK/NF-κB/JNK signaling pathway. Am J Transl Res, 2019, 11(8): 5114-5121.
- 31. Tian D, Liu J, Chen L, et al. The protective effects of PI3K/Akt pathway on human nucleus pulposus mesenchymal stem cells against hypoxia and nutrition deficiency. J Orthop Surg Res, 2020, 15(1): 29.
- 32. Wei K, Dai J, Wang Z, et al. Oxymatrine suppresses IL-1β-induced degradation of the nucleus pulposus cell and extracellular matrix through the TLR4/NF-κB signaling pathway. Exp Biol Med (Maywood), 2020. [Epub ahead of print].
- 33. Yao M, Zhang J, Li Z, et al. Marein protects human nucleus pulposus cells against high glucose-induced injury and extracellular matrix degradation at least partly by inhibition of ROS/NF-κB pathway. Int Immunopharmacol, 2020. [Epub ahead of print].
- 34. Long J, Wang X, Du X, et al. JAG2/Notch2 inhibits intervertebral disc degeneration by modulating cell proliferation, apoptosis, and extracellular matrix. Arthritis Res Ther, 2019, 21(1): 213.
- 35. Huang YC, Leung VY, Lu WW, et al. The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc. Spine J, 2013, 13(3): 352-362.
- 36. Huang YC, Hu Y, Li Z, et al. Biomaterials for intervertebral disc regeneration: Current status and looming challenges. J Tissue Eng Regen Med, 2018, 12(11): 2188-2202.
- 37. Gilbert HTJ, Hodson N, Baird P, et al. Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel-3 as a potential therapeutic target. Sci Rep, 2016, 6: 37360.
- 38. Huang YC, Urban JP, Luk KD. Intervertebral disc regeneration: do nutrients lead the way? Nat Rev Rheumatol, 2014, 10(9): 461-566.
- 39. Chuah YJ, Peck Y, Lau JE, et al. Hydrogel based cartilaginous tissue regeneration: recent insights and technologies. Biomater Sci, 2017, 5(4): 613-631.
- 40. Zeng C, Yang Q, Zhu M, et al. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering. Mater Sci Eng C Mater Biol Appl, 2014, 37: 232-240.
- 41. Buser Z, Kuelling F, Liu J, et al. Biological and biomechanical effects of fibrin injection into porcine intervertebral discs. Spine (Phila Pa 1976), 2011, 36(18): E1201-E1209.
- 42. Chou AI, Nicoll SB. Characterization of photocrosslinked alginate hydrogels for nucleus pulposus cell encapsulation. J Biomed Mater Res A, 2009, 91(1): 187-194.
- 43. Huang B, Li CQ, Zhou Y, et al. Collagen Ⅱ/hyaluronan/chondroitin-6-sulfate tri-copolymer scaffold for nucleus pulposus tissue engineering. J Biomed Mater Res B Appl Biomater, 2010, 92(2): 322-331.
- 44. Huang B, Zhuang Y, Li CQ, et al. Regeneration of the intervertebral disc with nucleus pulposus cell-seeded collagen II/hyaluronan/chondroitin-6-sulfate tri-copolymer constructs in a rabbit disc degeneration model. Spine (Phila Pa 1976), 2011, 36(26): 2252-2259.
- 45. Roughley P, Hoemann C, DesRosiers E, et al. The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials, 2006, 27(3): 388-396.
- 46. Collin EC, Grad S, Zeugolis DI, et al. An injectable vehicle for nucleus pulposus cell-based therapy. Biomaterials, 2011, 32(11): 2862-2870.
- 47. Calderon L, Collin E, Velasco-Bayon D, et al. Type Ⅱ collagen-hyaluronan hydrogel—a step towards a scaffold for intervertebral disc tissue engineering. Eur Cell Mater, 2010, 20: 134-148.
- 48. Mizuno H, Roy AK, Vacanti CA, et al. Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement. Spine (Phila Pa 1976), 2004, 29(12): 1290-1298.
- 49. Bowles RD, Setton LA. Biomaterials for intervertebral disc regeneration and repair. Biomaterials, 2017, 129: 54-67.
- 50. Kondiah PJ, Choonara YE, Kondiah PP, et al. A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules, 2016, 21(11): pii: E1580.
- 51. Wismer N, Grad S, Fortunato G, et al. Biodegradable electrospun scaffolds for annulus fibrosus tissue engineering: effect of scaffold structure and composition on annulus fibrosus cells in vitro. Tissue Eng Part A, 2014, 20(3-4): 672-682.
- 52. Helen W, Merry CLR, Blaker JJ, et al. Three-dimensional culture of annulus fibrosus cells within PDLLA/Bioglass (R) composite foam scaffolds: Assessment of cell attachment, proliferation and extracellular matrix production. Biomaterials, 2007, 28(11): 2010-2020.
- 53. Mauth C, Bono E, Haas S, et al. Cell-seeded polyurethane-fibrin structures—a possible system for intervertebral disc regeneration. Eur Cell Mater, 2009, 18: 27-38.
- 54. Jeong CG, Francisco AT, Niu Z, et al. Screening of hyaluronic acid-poly (ethylene glycol) composite hydrogels to support intervertebral disc cell biosynthesis using artificial neural network analysis. Acta Biomater, 2014, 10(8): 3421-3430.
- 55. Selviaridis P, Foroglou N, Tsitlakidis A, et al. Long-term outcome after implantation of prosthetic disc nucleus device (PDN) in lumbar disc disease. Hippokratia, 2010, 14(3): 176-184.
- 56. 马远征, 薛海滨, 陈兴, 等. 人工髓核置换术治疗腰椎间盘病变的中远期随访结果. 中华外科杂志, 2008, 46(5): 350-353.
- 57. Allen MJ, Schoonmaker JE, Bauer TW, et al. Preclinical evaluation of a poly (vinyl alcohol) hydrogel implant as a replacement for the nucleus pulposus. Spine (Phila Pa 1976), 2004, 29(5): 515-523.
- 58. Lewis G. Nucleus pulposus replacement and regeneration/repair technologies: present status and future prospects. J Biomed Mater Res B Appl Biomater, 2012, 100(6): 1702-1720.
- 59. 梁航, 邓享誉, 邵增务. 椎间盘内源性干细胞在椎间盘组织修复再生中的研究进展. 中国修复重建外科杂志, 2017, 31(10): 1267-1272.
- 60. Clouet J, Fusellier M, Camus A, et al. Intervertebral disc regeneration: From cell therapy to the development of novel bioinspired endogenous repair strategies. Adv Drug Deliv Rev, 2019, 146: 306-324.
- 61. Wang H, Zhou Y, Huang B, et al. Utilization of stem cells in alginate for nucleus pulposus tissue engineering. Tissue Eng Part A, 2014, 20(5-6): 908-920.
- 62. Day AJ, de la Motte CA. Hyaluronan cross-linking: a protective mechanism in inflammation? Trends Immunol, 2005, 26(12): 637-643.
- 63. Henriksson HB, Hagman M, Horn M, et al. Investigation of different cell types and gel carriers for cell-based intervertebral disc therapy, in vitro and in vivo studies. J Tissue Eng Regen Med, 2012, 6(9): 738-747.
- 64. Halloran DO, Grad S, Stoddart M, et al. An injectable cross-linked scaffold for nucleus pulposus regeneration. Biomaterials, 2008, 29(4): 438-447.
- 65. Francisco AT, Mancino RJ, Bowles RD, et al. Injectable laminin-functionalized hydrogel for nucleus pulposus regeneration. Biomaterials, 2013, 34(30): 7381-7388.
- 66. Francisco AT, Hwang PY, Jeong CG, et al. Photocrosslinkable laminin-functionalized polyethylene glycol hydrogel for intervertebral disc regeneration. Acta Biomater, 2014, 10(3): 1102-1111.
- 67. Wan S, Borland S, Richardson SM, et al. Self-assembling peptide hydrogel for intervertebral disc tissue engineering. Acta Biomater, 2016, 46: 29-40.
- 68. Tao H, Zhang Y, Wang CF, et al. Biological evaluation of human degenerated nucleus pulposus cells in functionalized self-assembling peptide nanofiber hydrogel scaffold. Tissue Eng Part A, 2014, 20(11-12): 1621-1631.
- 69. Kumar D, Lyness A, Gerges I, et al. Stem cell delivery with polymer hydrogel for treatment of intervertebral disc degeneration: From 3D culture to design of the delivery device for minimally invasive therapy. Cell Transplant, 2016, 25(12): 2213-2220.
- 70. Moss IL, Gordon L, Woodhouse KA, et al. A novel thiol-modified hyaluronan and elastin-like polypetide composite material for tissue engineering of the nucleus pulposus of the intervertebral disc. Spine (Phila Pa 1976), 2011, 36(13): 1022-1029.
- 71. Mwale F, Iordanova M, Demers CN, et al. Biological evaluation of chitosan salts cross-linked to genipin as a cell scaffold for disk tissue engineering. Tissue Eng, 2005, 11(1-2): 130-140.
- 72. Gan Y, Li S, Li P, et al. A controlled release codelivery system of MSCs encapsulated in dextran/gelatin hydrogel with TGF-β3-loaded nanoparticles for nucleus pulposus regeneration. Stem Cells Int, 2016, 2016: 9042019.
- 73. Nair MB, Baranwal G, Vijayan P, et al. Composite hydrogel of chitosan-poly (hydroxybutyrate-co-valerate) with chondroitin sulfate nanoparticles for nucleus pulposus tissue engineering. Colloids Surf B Biointerfaces, 2015, 136: 84-92.
- 74. Ligorio C, Zhou M, Wychowaniec JK, et al. Graphene oxide containing self-assembling peptide hybrid hydrogels as a potential 3D injectable cell delivery platform for intervertebral disc repair applications. Acta Biomater, 2019, 92: 92-103.
- 75. Bertolo A, Ettinger L, Aebli N, et al. The in vitro effects of dexamethasone, insulin and triiodothyronine on degenerative human intervertebral disc cells under normoxic and hypoxic conditions. Eur Cell Mater, 2011, 21: 221-229.
- 76. Su WY, Chen YC, Lin FH. Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration. Acta Biomater, 2010, 6(8): 3044-3055.
- 77. Cheng YH, Yang SH, Lin FH. Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration. Biomaterials, 2011, 32(29): 6953-6961.
- 78. Pan Z, Sun H, Xie B, et al. Therapeutic effects of gefitinib-encapsulated thermosensitive injectable hydrogel in intervertebral disc degeneration. Biomaterials, 2018, 160: 56-68.
- 79. Ono Y, Ishizuka S, Knudson CB, et al. Chondroprotective effect of kartogenin on CD44-mediated functions in articular cartilage and chondrocytes. Cartilage, 2014, 5(3): 172-180.
- 80. Zhu Y, Tan J, Zhu H, et al. Development of kartogenin-conjugated chitosan-hyaluronic acid hydrogel for nucleus pulposus regeneration. Biomater Sci, 2017, 5(4): 784-791.
- 81. Yang X, Li X. Nucleus pulposus tissue engineering: a brief review. Eur Spine J, 2009, 18(11): 1564-1572.
- 82. Kennon JC, Awad ME, Chutkan N, et al. Current insights on use of growth factors as therapy for Intervertebral Disc Degeneration. Biomol Concepts, 2018, 9(1): 43-52.
- 83. Henry N, Clouet J, Fragale A, et al. Pullulan microbeads/Si-HPMC hydrogel injectable system for the sustained delivery of GDF-5 and TGF-β1: new insight into intervertebral disc regenerative medicine. Drug Deliv, 2017, 24(1): 999-1010.
- 84. Peeters M, Detiger SE, Karfeld-Sulzer LS, et al. BMP-2 and BMP-2/7 heterodimers conjugated to a fibrin/hyaluronic acid hydrogel in a large animal model of mild intervertebral disc degeneration. Biores Open Access, 2015, 4(1): 398-406.
- 85. Ehlicke F, Freimark D, Heil B, et al. Intervertebral disc regeneration: influence of growth factors on differentiation of human mesenchymal stem cells (hMSC). Int J Artif Organs, 2010, 33(4): 244-252.
- 86. Vadalà G, Russo F, Musumeci M, et al. Clinically relevant hydrogel-based on hyaluronic acid and platelet rich plasma as a carrier for mesenchymal stem cells: Rheological and biological characterization. J Orthop Res, 2017, 35(10): 2109-2116.
- 87. Bucher C, Gazdhar A, Benneker LM, et al. Nonviral gene delivery of growth and differentiation factor 5 to human mesenchymal stem cells injected into a 3D bovine intervertebral disc organ culture system. Stem Cells Int, 2013, 2013: 326828.
- 88. Feng G, Chen H, Li J, et al. Gene therapy for nucleus pulposus regeneration by heme oxygenase-1 plasmid DNA carried by mixed polyplex micelles with thermo-responsive heterogeneous coronas. Biomaterials, 2015, 52: 1-13.
- 89. Feng G, Zha Z, Huang Y, et al. Sustained and bioresponsive two-stage delivery of therapeutic miRNA via polyplex micelle-loaded injectable hydrogels for inhibition of intervertebral disc fibrosis. Adv Healthc Mater, 2018, 7(21): e1800623.
- 90. Zhu Y, Liang Y, Zhu H, et al. The generation and functional characterization of induced pluripotent stem cells from human intervertebral disc nucleus pulposus cells. Oncotarget, 2017, 8(26): 42700-42711.
- 91. Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384-388.
- 92. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338.
- 93. Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun, 2016, 7: 11215.
- 94. He R, Liu P, Xie X, et al. circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a. J Exp Clin Cancer Res, 2017, 36(1): 145.
- 95. Song J, Wang HL, Song KH, et al. CircularRNA_104670 plays a critical role in intervertebral disc degeneration by functioning as a ceRNA. Exp Mol Med, 2018, 50(8): 94.
- 96. Wang X, Wang B, Zou M, et al. CircSEMA4B targets miR-431 modulating IL-1β-induced degradative changes in nucleus pulposus cells in intervertebral disc degeneration via Wnt pathway. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(11): 3754-3768.
- 97. Du L, Yang Q, Zhang J, et al. Engineering a biomimetic integrated scaffold for intervertebral disc replacement. Mater Sci Eng C Mater Biol Appl, 2019, 96: 522-529.
- 98. Bowles RD, Gebhard HH, Härtl R, et al. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine. Proc Natl Acad Sci U S A, 2011, 108(32): 13106-13111.
- 99. Park SH, Gil ES, Cho H, et al. Intervertebral disk tissue engineering using biphasic silk composite scaffolds. Tissue Eng Part A, 2012, 18(5-6): 447-458.
- 100. Gloria A, De Santis R, Ambrosio L, et al. A multi-component fiber-reinforced PHEMA-based hydrogel/HAPEX device for customized intervertebral disc prosthesis. J Biomater Appl, 2011, 25(8): 795-810.
- 101. Martin JT, Kim DH, Milby AH, et al. In vivo performance of an acellular disc-like angle ply structure (DAPS) for total disc replacement in a small animal model. J Orthop Res, 2017, 35(1): 23-31.