1. |
Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury, 2005, 36(Suppl 3): S20-S27.
|
2. |
Moore WR, Graves SE, Bain GI. Synthetic bone graft substitutes. ANZ J Surg, 2001, 71(6): 354-361.
|
3. |
Samartzis D, Shen FH, Goldberg EJ, et al. Is autograft the gold standard in achieving radiographic fusion in one-level anterior cervical discectomy and fusion with rigid anterior plate fixation? Spine (Phila Pa 1976), 2005, 30(15): 1756-1761.
|
4. |
Hench LL. Bioceramics. Journal of the American Ceramic Society, 1998, 81(7): 1705-1728.
|
5. |
Montazerian M, Dutra Zanotto E. History and trends of bioactive glass-ceramics. J Biomed Mat Res A, 2016, 104(5): 1231-1249.
|
6. |
Fu Q, Rahaman MN, Fu H, et al. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mat Res A, 2010, 95(1): 164-171.
|
7. |
Brown RF, Rahaman MN, Dwilewicz AB, et al. Effect of borate glass composition on its conversion to hydroxyapatite and on the proliferation of MC3T3-E1 cells. J Biomed Mater Res A, 2009, 88(2): 392-400.
|
8. |
Huang W, Day DE, Kittiratanapiboon K, et al. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci Mater Med, 2006, 17(7): 583-596.
|
9. |
Gao H, Tan T, Wang D. Dissolution mechanism and release kinetics of phosphate controlled release glasses in aqueous medium. J Control Release, 2004, 96(1): 29-36.
|
10. |
Abou Neel EA, Chrzanowski W, Pickup DM, et al. Structure and properties of strontium-doped phosphate-based glasses. J R Soc Interface, 2009, 6(34): 435-446.
|
11. |
Jones JR, Brauer DS, Hupa L, et al. Bioglass and bioactive glasses and their impact on healthcare. International Journal of Applied Glass Science, 2016, 7(4): 423-434.
|
12. |
Rust KR, Singleton GT, Wilson J, et al. Bioglass middle ear prosthesis: long-term results. Am J Otol, 1996, 17(3): 371-374.
|
13. |
Stanley HR, Hall MB, Clark AE, et al. Using 45S5 bioglass cones as endosseous ridge maintenance implants to prevent alveolar ridge resorption: a 5-year evaluation. Int J Oral Maxillofac Implants, 1997, 12(1): 95-105.
|
14. |
Jones JR. Reprint of: Review of bioactive glass: From Hench to hybrids. Acta Biomater, 2015, 23(Suppl): S53-S82.
|
15. |
Chacko NL, Abraham S, Rao HN, et al. A clinical and radiographic evaluation of periodontal regenerative potential of PerioGlas®: a synthetic, resorbable material in treating periodontal infrabony defects. J Int Oral Health, 2014, 6(3): 20-26.
|
16. |
Yajamanya SR, Chatterjee A, Hussain A, et al. Bioactive glass versus autologous platelet-rich fibrin for treating periodontal intrabony defects: A comparative clinical study. J Indian Soc Periodontol, 2017, 21(1): 32-36.
|
17. |
Waltimo T, Mohn D, Paqué F, et al. Fine-tuning of bioactive glass for root canal disinfection. J Dent Res, 2009, 88(3): 235-238.
|
18. |
Chandrasekar RS, Lavu V, Kumar K, et al. Evaluation of antimicrobial properties of bioactive glass used in regenerative periodontal therapy. J Indian Soc Periodontol, 2015, 19(5): 516-519.
|
19. |
Ilharreborde B, Morel E, Fitoussi F, et al. Bioactive glass as a bone substitute for spinal fusion in adolescent idiopathic scoliosis: a comparative study with iliac crest autograft. J Pediatr Orthop, 2008, 28(3): 347-351.
|
20. |
Asmita, Gupta V, Bains VK, et al. Clinical and cone beam computed tomography comparison of NovaBone Dental Putty and PerioGlas in the treatment of mandibular Class Ⅱ furcations. Indian J Dent Res, 2014, 25(2): 166-173.
|
21. |
Biswas S, Sambashivaiah S, Kulal R, et al. Comparative evaluation of bioactive glass (putty) and platelet rich fibrin in treating furcation defects. J Oral Implantol, 2016, 42(5): 411-415.
|
22. |
Frantzén J, Rantakokko J, Aro HT, et al. Instrumented spondylodesis in degenerative spondylolisthesis with bioactive glass and autologous bone: a prospective 11-year follow-up. J Spinal Disord Tech, 2011, 24(7): 455-461.
|
23. |
Rantakokko J, Frantzén JP, Heinänen J, et al. Posterolateral spondylodesis using bioactive glass S53P4 and autogenous bone in instrumented unstable lumbar spine burst fractures. A prospective 10-year follow-up study. Scand J Surg, 2012, 101(1): 66-71.
|
24. |
Bigoni M, Turati M, Zanchi N, et al. Clinical applications of Bioactive glass S53P4 in bone infections: a systematic review. Eur Rev Med Pharmacol Sci, 2019, 23(2 Suppl): 240-251.
|
25. |
Greenspan DC, Zhong JP, LaTorre GP. Effect of surface area to volume ratio on in vitro surface reactions of bioactive glass particulates-bioceramics: Proceedings of the 7th international symposium on ceramics in medicine. Bioceramics, 1994: 55-60.
|
26. |
Ravanbakhsh M, Labbaf S, Karimzadeh F, et al. Mesoporous bioactive glasses for the combined application of osteosarcoma treatment and bone regeneration. Mater Sci Eng C Mater Biol Appl, 2019, 104: 109994.
|
27. |
He X, Liu Y, Tan Y, et al. Rubidium-containing mesoporous bioactive glass scaffolds support angiogenesis, osteogenesis and antibacterial activity. Mater Sci Eng C Mater Biol Appl, 2019, 105: 110155.
|
28. |
Du X, Wei D, Huang L, et al. 3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109731.
|
29. |
Fu S, Du X, Zhu M, et al. 3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors. Biomed Mater, 2019, 14(6): 065011.
|
30. |
Oliver JN, Su Y, Lu X, et al. Bioactive glass coatings on metallic implants for biomedical applications. Bioact Mater, 2019, 4: 261-270.
|
31. |
Kargozar S, Montazerian M, Fiume E, et al. Multiple and promising applications of strontium (Sr)-containing bioactive glasses in bone tissue engineering. Front Bioeng Biotechnol, 2019, 7: 161.
|
32. |
Newman SD, Lotfibakhshaiesh N, O’Donnell M, et al. Enhanced osseous implant fixation with strontium-substituted bioactive glass coating. Tissue Eng Part A, 2014, 20(13-14): 1850-1857.
|
33. |
Omar S, Repp F, Desimone PM, et al. Sol-gel hybrid coatings with strontium-doped 45S5 glass particles for enhancing the performance of stainless steel implants: Electrochemical, bioactive and in vivo response. Journal of Non-Crystalline Solids, 2015, 425: 1-10.
|
34. |
Rau JV, Curcio M, Raucci MG, et al. Cu-releasing bioactive glass coatings and their in vitro properties. ACS Appl Mater Interfaces, 2019, 11(6): 5812-5820.
|
35. |
Liu X, Chen HH, Lin YC, et al. Composite polyelectrolyte multilayer and mesoporous bioactive glass nanoparticle coating on 316L stainless steel for controlled antibiotic release and biocompatibility. J Biomed Nanotechnol, 2018, 14(4): 725-735.
|
36. |
Sun L, Berndt CC, Gross KA, et al. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J Biomed Mater Res, 2001, 58(5): 570-592.
|
37. |
Sola A, Bellucci D, Cannillo V, et al. Bioactive glass coatings: a review. Surface Engineering, 2011, 27(8): 560-572.
|
38. |
Cui X, Zhao C, Gu Y, et al. A novel injectable borate bioactive glass cement for local delivery of vancomycin to cure osteomyelitis and regenerate bone. J Mater Sci Mater Med, 2014, 25(3): 733-745.
|
39. |
张亚东. 可注射性硼酸盐生物玻璃骨水泥的制备及对骨缺损修复的研究. 上海: 上海交通大学, 2015.
|
40. |
Zhang Y, Cui X, Zhao S, et al. Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model. ACS Appl Mater Interfaces, 2015, 7(4): 2393-2403.
|
41. |
Cui X, Huang C, Zhang M, et al. Enhanced osteointegration of poly (methylmethacrylate) bone cements by incorporating strontium-containing borate bioactive glass. J R Soc Interface, 2017, 14(131): pii: 20161057.
|
42. |
Goñi I, Rodríguez R, García-Arnáez I, et al. Preparation and characterization of injectable PMMA-strontium-substituted bioactive glass bone cement composites. J Biomed Mater Res B Appl Biomater, 2018, 106(3): 1245-1257.
|
43. |
Ding H, Zhao CJ, Cui X, et al. A novel injectable borate bioactive glass cement as an antibiotic delivery vehicle for treating osteomyelitis. PLoS One, 2014, 9(1): e85472.
|
44. |
Jia WT, Fu Q, Huang WH, et al. Comparison of borate bioactive glass and calcium sulfate as implants for the local delivery of teicoplanin in the treatment of methicillin-resistant Staphylococcus aureus-induced osteomyelitis in a rabbit model. Antimicrob Agents Chemother, 2015, 59(12): 7571-7580.
|
45. |
Niu H, Ma Y, Wu G, et al. Multicellularity-interweaved bone regeneration of BMP-2-loaded scaffold with orchestrated kinetics of resorption and osteogenesis. Biomaterials, 2019, 216: 119216.
|
46. |
Wang X, Liu Q, Chen W, et al. FGF adsorbed mesoporous bioactive glass with larger pores in enhancing bone tissue engineering. J Mater Sci Mater Med, 2019, 30(4): 48.
|
47. |
Pace CN, Treviño S, Prabhakaran E, et al. Protein structure, stability and solubility in water and other solvents. Philos Trans R Soc Lond B Biol Sci, 2004, 359(1448): 1225-1234.
|
48. |
Baino F, Hamzehlou S, Kargozar S. Bioactive glasses: Where are we and where are we going? J Funct Biomater, 2018, 9(1): pii: E25.
|
49. |
Zhao S, Zhang J, Zhu M, et al. Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects. Acta Biomater, 2015, 12: 270-280.
|
50. |
Zhao F, Lei B, Li X, et al. Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials, 2018, 178: 36-47.
|
51. |
Autefage H, Allen F, Tang HM, et al. Multiscale analyses reveal native-like lamellar bone repair and near perfect bone-contact with porous strontium-loaded bioactive glass. Biomaterials, 2019, 209: 152-162.
|
52. |
Fiume E, Barberi J, Verné E, et al. Bioactive glasses: from parent 45S5 composition to scaffold-assisted tissue-healing therapies. J Funct Biomater, 2018, 9(1): pii: E24.
|
53. |
El-Rashidy AA, Roether JA, Harhaus L, et al. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. Acta Biomater, 2017, 62: 1-28.
|
54. |
Gómez-Cerezo N, Casarrubios L, Saiz-Pardo M, et al. Mesoporous bioactive glass/ε-polycaprolactone scaffolds promote bone regeneration in osteoporotic sheep. Acta Biomater, 2019, 90: 393-402.
|
55. |
Fu Q, Saiz E, Tomsia AP. Bioinspired strong and highly porous glass scaffolds. Adv Funct Mater, 2011, 21(6): 1058-1063.
|
56. |
邓廉夫, 燕宇飞. 骨修复材料的研究现状与进展. 中国修复重建外科杂志, 2018, 32(7): 815-820.
|
57. |
康明, 黄杰华, 张理选, 等. 壳聚糖/胡须/磷酸钙骨水泥复合生物材料的力学性能及对诱导多能干细胞成骨潜能的影响. 中国修复重建外科杂志, 2018, 32(7): 959-967.
|