1. |
Zhao Y, Liu H, Zhao C, et al. Paracrine interactions involved in human induced pluripotent stem cells differentiation into chondrocytes. Curr Stem Cell Res Ther, 2019. [Epub ahead of print].
|
2. |
王方兴, 薛华明, 马童, 等. 人工单髁关节置换术治疗超高龄膝关节骨关节炎患者的近期疗效. 中国修复重建外科杂志, 2019, 33(8): 947-952.
|
3. |
Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis. Nat Rev Dis Primers, 2016, 2: 16072.
|
4. |
刘康妍, 郑聪, 胡海澜. 骨关节炎流行病学研究. 中华关节外科杂志 (电子版), 2017, 11(3): 320-323.
|
5. |
Aspden RM, Saunders FR. Osteoarthritis as an organ disease: from the cradle to the grave. Eur Cell Mater, 2019, 37: 74-87.
|
6. |
陈闻波, 蔡江瑜, 孙亚英, 等. 应用干细胞旁分泌效应治疗膝部骨关节炎的研究进展. 中国修复重建外科杂志, 2019, 33(1): 1446-1451.
|
7. |
Kwan Tat S, Lajeunesse D, Pelletier JP, et al. Targeting subchondral bone for treating osteoarthritis: what is the evidence? Best Pract Res Clin Rheumatol, 2010, 24(1): 51-70.
|
8. |
Zhou Y, Wang T, Hamilton JL, et al. Wnt/β-catenin signaling in osteoarthritis and in other forms of arthritis. Curr Rheumatol Rep, 2017, 19(9): 53.
|
9. |
Rigoglou S, Papavassiliou AG. The NF-κB signalling pathway in osteoarthritis. Int J Biochem Cell Biol, 2013, 45(11): 2580-2584.
|
10. |
Malemud CJ. Negative Regulators of JAK/STAT signaling in rheumatoid arthritis and osteoarthritis. Int J Mol Sci, 2017, 18(3): E484.
|
11. |
Zhai G, Doré J, Rahman P. TGF-β signal transduction pathways and osteoarthritis. Rheumatol Int, 2015, 35(8): 1283-1292.
|
12. |
Usami Y, Gunawardena AT, Iwamoto M, et al. Wnt signaling in cartilage development and diseases: lessons from animal studies. Lab Invest, 2016, 96(2): 186-196.
|
13. |
Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell, 2017, 169(6): 985-999.
|
14. |
MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 2009, 17(1): 9-26.
|
15. |
Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell, 2012, 149(6): 1192-1205.
|
16. |
Clevers H. Wnt/beta-catenin signaling in development and disease. Cell, 2006, 127(3): 469-480.
|
17. |
Wang Y, Fan X, Xing L, et al. Wnt signaling: a promising target for osteoarthritis therapy. Cell Commun Signal, 2019, 17(1): 97.
|
18. |
Funck-Brentano T, Bouaziz W, Marty C, et al. DKK-1-mediated inhibition of Wnt signaling in bone ameliorates osteoarthritis in mice. Arthritis Rheumatol, 2014, 66(11): 3028-3039.
|
19. |
Yuan X, Liu H, Huang H, et al. The key role of canonical Wnt/β-catenin signaling in cartilage chondrocytes. Curr Drug Targets, 2016, 17(4): 475-484.
|
20. |
Ma B, Landman EB, Miclea RL, et al. WNT signaling and cartilage: of mice and men. Calcif Tissue Int, 2013, 92(5): 399-411.
|
21. |
Chen K, Quan H, Chen G, et al. Spatio-temporal expression patterns of Wnt signaling pathway during the development of temporomandibular condylar cartilage. Gene Expr Patterns, 2017, 25-26: 149-158.
|
22. |
Zhang Y, Sheu TJ, Hoak D, et al. CCN1 regulates chondrocyte maturation and cartilage development. J Bone Miner Res, 2016, 31(3): 549-559.
|
23. |
Huang X, Zhong L, Hendriks J, et al. The effects of the WNT-signaling modulators BIO and PKF118-310 on the chondrogenic differentiation of human mesenchymal stem cells. Int J Mol Sci, 2018, 19(2): E561.
|
24. |
Regard JB, Zhong Z, Williams BO, et al. Wnt signaling in bone development and disease: making stronger bone with Wnts. Cold Spring Harb Perspect Biol, 2012, 4(12): a007997.
|
25. |
Yang T, Zhang J, Cao Y, et al. Wnt5a/Ror2 mediates temporomandibular joint subchondral bone remodeling. J Dent Res, 2015, 94(6): 803-812.
|
26. |
Esen E, Chen J, Karner CM, et al. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab, 2013, 17(5): 745-755.
|
27. |
Heilmann A, Schinke T, Bindl R, et al. The Wnt serpentine receptor Frizzled-9 regulates new bone formation in fracture healing. PLoS One, 2013, 8(12): e84232.
|
28. |
Houschyar KS, Tapking C, Borrelli MR, et al. Wnt pathway in bone repair and regeneration-what do we know so far. Front Cell Dev Biol, 2019, 6: 170.
|
29. |
Zhang R, Oyajobi BO, Harris SE, et al. Wnt/β-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone, 2013, 52(1): 145-156.
|
30. |
Rudnicki MA, Williams BO. Wnt signaling in bone and muscle. Bone, 2015, 80: 60-66.
|
31. |
Roberts JL, Liu G, Paglia DN, et al. Deletion of Wnt5a in osteoclasts results in bone loss through decreased bone formation. Ann N Y Acad Sci, 2020, 1463(1): 45-59.
|
32. |
Alam I, Reilly AM, Alkhouli M, et al. Bone mass and strength are significantly improved in mice overexpressing human WNT16 in osteocytes. Calcif Tissue Int, 2017, 100(4): 361-373.
|
33. |
Loeser RF, Goldring SR, Scanzello CR, et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum, 2012, 64(6): 1697-1707.
|
34. |
Troeberg L, Nagase H. Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta, 2012, 1824(1): 133-145.
|
35. |
Hou L, Shi H, Wang M, et al. MicroRNA-497-5p attenuates IL-1β-induced cartilage matrix degradation in chondrocytes via Wnt/β-catenin signal pathway. Int J Clin Exp Pathol, 2019, 12(8): 3108-3118.
|
36. |
Liu X, Wang L, Ma C, et al. Exosomes derived from platelet-rich plasma present a novel potential in alleviating knee osteoarthritis by promoting proliferation and inhibiting apoptosis of chondrocyte via Wnt/β-catenin signaling pathway. J Orthop Surg Res, 2019, 14(1): 470.
|
37. |
Nalesso G, Thomas BL, Sherwood JC, et al. WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis. Ann Rheum Dis, 2017, 76(1): 218-226.
|
38. |
Monteagudo S, Cornelis FMF, Aznar-Lopez C, et al. DOT1L safeguards cartilage homeostasis and protects against osteoarthritis. Nat Commun, 2017, 8: 15889.
|
39. |
Gu Y, Ren K, Wang L, et al. Loss of Klotho contributes to cartilage damage by derepression of canonical Wnt/β-catenin signaling in osteoarthritis mice. Aging (Albany NY), 2019, 11(24): 12793-12809.
|
40. |
Deshmukh V, Hu H, Barroga C, et al. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthritis Cartilage, 2018, 26(1): 18-27.
|
41. |
Yazici Y, McAlindon TE, Fleischmann R, et al. A novel Wnt pathway inhibitor, SM04690, for the treatment of moderate to severe osteoarthritis of the knee: results of a 24-week, randomized, controlled, phase 1 study. Osteoarthritis Cartilage, 2017, 25(10): 1598-1606.
|
42. |
van den Bosch MH, Blom AB, Sloetjes AW, et al. Induction of canonical Wnt signaling by synovial overexpression of selected Wnts leads to protease activity and early osteoarthritis-like cartilage damage. Am J Pathol, 2015, 185(7): 1970-1980.
|
43. |
Meo Burt P, Xiao L, Hurley MM. FGF23 regulates Wnt/β-catenin signaling-mediated osteoarthritis in mice overexpressing high-molecular-weight FGF2. Endocrinology, 2018, 159(6): 2386-2396.
|
44. |
Chan BY, Fuller ES, Russell AK, et al. Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. Osteoarthritis Cartilage, 2011, 19(7): 874-885.
|
45. |
Martineau X, Abed É, Martel-Pelletier J, et al. Alteration of Wnt5a expression and of the non-canonical Wnt/PCP and Wnt/PKC-Ca2+ pathways in human osteoarthritis osteoblasts. PLoS One, 2017, 12(8): e0180711.
|
46. |
Weng LH, Wang CJ, Ko JY, et al. Control of DKK-1 ameliorates chondrocyte apoptosis, cartilage destruction, and subchondral bone deterioration in osteoarthritic knees. Arthritis Rheum, 2010, 62(5): 1393-1402.
|
47. |
Thysen S, Luyten FP, Lories RJ. Loss of Frzb and Sfrp1 differentially affects joint homeostasis in instability-induced osteoarthritis. Osteoarthritis Cartilage, 2015, 23(2): 275-279.
|
48. |
肖志锋, 林定坤. 骨关节炎软骨内骨化病理研究进展. 中国修复重建外科杂志, 2016, 30(12): 1556-1561.
|
49. |
Kobayashi Y, Uehara S, Udagawa N, et al. Regulation of bone metabolism by Wnt signals. J Biochem, 2016, 159(4): 387-392.
|
50. |
Carpintero-Fernandez P, Gago-Fuentes R, Wang HZ, et al. Intercellular communication via gap junction channels between chondrocytes and bone cells. Biochim Biophys Acta Biomembr, 2018, 1860(12): 2499-2505.
|
51. |
Prasadam I, Crawford R, Xiao Y. Aggravation of ADAMTS and matrix metalloproteinase production and role of ERK1/2 pathway in the interaction of osteoarthritic subchondral bone osteoblasts and articular cartilage chondrocytes—possible pathogenic role in osteoarthritis. J Rheumatol, 2012, 39(3): 621-634.
|
52. |
Chen P, Xia C, Mo J, et al. Interpenetrating polymer network scaffold of sodium hyaluronate and sodium alginate combined with berberine for osteochondral defect regeneration. Mater Sci Eng C Mater Biol Appl, 2018, 91: 190-200.
|
53. |
Li X, Yang J, Liu D, et al. Knee loading inhibits osteoclast lineage in a mouse model of osteoarthritis. Sci Rep, 2016, 6: 24668.
|