1. |
Mackinnon SE, Hudson AR. Clinical application of peripheral nerve transplantation. Plast Reconstr Surg, 1992, 90(4): 695-699.
|
2. |
Chen ZL, Yu WM, Strickland S. Peripheral regeneration. Annu Rev Neurosci, 2007, 30: 209-233.
|
3. |
Riccio M, Marchesini A, Pugliese P, et al. Nerve repair and regeneration: Biological tubulization limits and future perspectives. J Cell Physiol, 2019, 234(4): 3362-3375.
|
4. |
Assinck P, Duncan GJ, Hilton BJ, et al. Cell transplantation therapy for spinal cord injury. Nat Neurosci, 2017, 20(5): 637-647.
|
5. |
Faroni A, Terenghi G, Reid AJ. Adipose-derived stem cells and nerve regeneration: promises and pitfalls. Int Rev Neurobiol, 2013, 108: 121-136.
|
6. |
Watanabe Y, Sasaki R, Matsumine H, et al. Undifferentiated and differentiated adipose-derived stem cells improve nerve regeneration in a rat model of facial nerve defect. J Tissue Eng Regen Med, 2017, 11(2): 362-374.
|
7. |
Orbay H, Uysal AC, Hyakusoku H, et al. Differentiated and undifferentiated adipose-derived stem cells improve function in rats with peripheral nerve gaps. J Plast Reconstr Aesthet Surg, 2012, 65(5): 657-664.
|
8. |
Shen CC, Yang YC, Liu BS. Peripheral nerve repair of transplanted undifferentiated adipose tissue-derived stem cells in a biodegradable reinforced nerve conduit. J Biomed Mater Res A, 2012, 100(1): 48-63.
|
9. |
Hsu MN, Liao HT, Li KC, et al. Adipose-derived stem cell sheets functionalized by hybrid baculovirus for prolonged GDNF expression and improved nerve regeneration. Biomaterials, 2017, 140: 189-200.
|
10. |
Sowa Y, Imura T, Numajiri T, et al. Adipose-derived stem cells produce factors enhancing peripheral nerve regeneration: influence of age and anatomic site of origin. Stem Cells Dev, 2012, 21(11): 1852-1862.
|
11. |
Scheib J, Höke A. Advances in peripheral nerve regeneration. Nat Rev Neurol, 2013, 9(12): 668-676.
|
12. |
Arthur-Farraj PJ, Latouche M, Wilton DK, et al. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron, 2012, 75(4): 633-647.
|
13. |
Cattin AL, Burden JJ, Van Emmenis L, et al. Macrophage-induced blood vessels guide Schwann cell-mediated regeneration of peripheral nerves. Cell, 2015, 162(5): 1127-1139.
|
14. |
Kolar MK, Kingham PJ. Regenerative effects of adipose-tissue-derived stem cells for treatment of peripheral nerve injuries. Biochem Soc Trans, 2014, 42(3): 697-701.
|
15. |
Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells, 2017, 35(4): 851-858.
|
16. |
Salgado AJ, Reis RL, Sousa NJ, et al. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther, 2010, 5(2): 103-110.
|
17. |
Lopatina T, Kalinina N, Karagyaur M, et al. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One, 2011, 6(3): e17899.
|
18. |
Kingham PJ, Kolar MK, Novikova LN, et al. Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells Dev, 2014, 23(7): 741-754.
|
19. |
Suga H, Glotzbach JP, Sorkin M, et al. Paracrine mechanism of angiogenesis in adipose-derived stem cell transplantation. Ann Plast Surg, 2014, 72(2): 234-241.
|
20. |
Han Y, Ren J, Bai Y, et al. Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R. Int J Biochem Cell Biol, 2019, 109: 59-68.
|
21. |
Kim WS, Park BS, Sung JH. The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin Biol Ther, 2009, 9(7): 879-887.
|
22. |
Liu CY, Yin G, Sun YD, et al. Effect of exosomes from adipose-derived stem cells on the apoptosis of Schwann cells in peripheral nerve injury. CNS Neurosci Ther, 2020, 26(2): 189-196.
|
23. |
Schweizer R, Gorantla VS, Plock JA. Premise and promise of mesenchymal stem cell-based therapies in clinical vascularized composite allotransplantation. Curr Opin Organ Transplant, 2015, 20(6): 608-614.
|
24. |
Cui L, Yin S, Liu W, et al. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng, 2007, 13(6): 1185-1195.
|
25. |
Crop MJ, Baan CC, Korevaar SS, et al. Inflammatory conditions affect gene expression and function of human adipose tissue-derived mesenchymal stem cells. Clin Exp Immunol, 2010, 162(3): 474-486.
|
26. |
Kuo YR, Chen CC, Chen YC, et al. Recipient adipose-derived stem cells enhance recipient cell engraftment and prolong allotransplant survival in a miniature swine hind-limb model. Cell Transplant, 2017, 26(8): 1418-1427.
|
27. |
Chen S, Cui G, Peng C, et al. Transplantation of adipose-derived mesenchymal stem cells attenuates pulmonary fibrosis of silicosis via anti-inflammatory and anti-apoptosis effects in rats. Stem Cell Res Ther, 2018, 9(1): 110.
|
28. |
Kapur SK, Katz AJ. Review of the adipose derived stem cell secretome. Biochimie, 2013, 95(12): 2222-2228.
|
29. |
Kingham PJ, Kalbermatten DF, Mahay D, et al. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol, 2007, 207(2): 267-274.
|
30. |
Moosazadeh Moghaddam M, Bonakdar S, Shokrgozar MA, et al. Engineered substrates with imprinted cell-like topographies induce direct differentiation of adipose-derived mesenchymal stem cells into Schwann cells. Artif Cells Nanomed Biotechnol, 2019, 47(1): 1022-1035.
|
31. |
Lu P, Blesch A, Tuszynski MH. Induction of bone marrow stromal cells to neurons: Differentiation, transdifferentiation, or artifact? J Neurosci Res, 2004, 77(2): 174-191.
|
32. |
Chen Y, Teng FY, Tang BL. Coaxing bone marrow stromal mesenchymal stem cells towards neuronal differentiation: progress and uncertainties. Cell Mol Life Sci, 2006, 63(14): 1649-1657.
|
33. |
Faroni A, Smith RJ, Lu L, et al. Human Schwann-like cells derived from adipose-derived mesenchymal stem cells rapidly de-differentiate in the absence of stimulating medium. Eur J Neurosci, 2016, 43(3): 417-430.
|
34. |
Kang Y, Liu Y, Liu Z, et al. Differentiated human adipose-derived stromal cells exhibit the phenotypic and functional characteristics of mature Schwann cells through a modified approach. Cytotherapy, 2019, 21(9): 987-1003.
|
35. |
Abdanipour A, Tiraihi T. Induction of adipose-derived stem cell into motoneuron-like cells using selegiline as preinducer. Brain Res, 2012, 1440: 23-33.
|
36. |
Liqing Y, Jia G, Jiqing C, et al. Directed differentiation of motor neuron cell-like cells from human adipose-derived stem cells in vitro. Neuroreport, 2011, 22(8): 370-373.
|
37. |
Moon MY, Kim HJ, Choi BY, et al. Zinc Promotes adipose-derived mesenchymal stem cell proliferation and differentiation towards a neuronal fate. Stem Cells Int, 2018, 2018: 5736535.
|
38. |
Ying CC, Yang M, Wang Y, et al. Neural-like cells from adipose-derived stem cells for cavernous nerve injury in rats. Neural Regen Res, 2019, 14(6): 1085-1090.
|
39. |
赵斌, 马剑雄, 马信龙. 组织工程周围神经血管化研究进展. 中国修复重建外科杂志, 2019, 33(8): 1029-1032.
|
40. |
Nie C, Yang D, Xu J, et al. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant, 2011, 20(2): 205-216.
|
41. |
Almalki SG, Llamas Valle Y, Agrawal DK. MMP-2 and MMP-14 silencing inhibits VEGFR2 cleavage and induces the differentiation of porcine adipose-derived mesenchymal stem cells to endothelial cells. Stem Cells Transl Med, 2017, 6(5): 1385-1398.
|
42. |
周虹, 张涛. 脂肪间充质干细胞分化为内皮细胞并体外构建组织工程心脏瓣膜. 中国组织工程研究, 2012, 16(27): 4979-4984.
|
43. |
Syu WZ, Hueng DY, Chen WL, et al. Adipose-derived neural stem cells combined with acellular dermal matrix as a neural conduit enhances peripheral nerve repair. Cell Transplant, 2019, 28(9-10): 1220-1230.
|
44. |
Tomita K, Nishibayashi A, Yano K, et al. Differentiated adipose-derived stem cells promote reinnervation of rat skin flaps. Plast Reconstr Surg Glob Open, 2013, 1(3): e22.
|
45. |
尹刚, 刘蔡钺, 林耀发, 等. 脂肪干细胞来源外泌体对周围神经损伤后再生作用的实验研究. 中国修复重建外科杂志, 2018, 32(12): 103-107.
|
46. |
Bucan V, Vaslaitis D, Peck CT, et al. Effect of exosomes from rat adipose-derived mesenchymal stem cells on neurite outgrowth and sciatic nerve regeneration after crush injury. Mol Neurobiol, 2019, 56(3): 1812-1824.
|
47. |
Chen J, Ren S, Duscher D, et al. Exosomes from human adipose-derived stem cells promote sciatic nerve regeneration via optimizing Schwann cell function. J Cell Physiol, 2019, 234(12): 23097-23110.
|
48. |
Hsu MN, Liao HT, Truong VA, et al. CRISPR-based activation of endogenous neurotrophic genes in adipose stem cell sheets to stimulate peripheral nerve regeneration. Theranostics, 2019, 9(21): 6099-6111.
|
49. |
Thakkar UG, Vanikar AV, Trivedi HL. Co-infusion of autologous adipose tissue derived neuronal differentiated mesenchymal stem cells and bone marrow derived hematopoietic stem cells, a viable therapy for post-traumatic brachial plexus injury: a case report. Biomed J, 2014, 37(4): 237-240.
|
50. |
Haahr MK, Jensen CH, Toyserkani NM, et al. Safety and potential effect of a single intracavernous injection of autologous adipose-derived regenerative cells in patients with erectile dysfunction following radical prostatectomy: An open-label phase Ⅰ clinical trial. EBioMedicine, 2016, 5: 204-210.
|
51. |
Haahr MK, Harken Jensen C, Toyserkani NM, et al. A 12-month follow-up after a single intracavernous injection of autologous adipose-derived regenerative cells in patients with erectile dysfunction following radical prostatectomy: An open-label phase Ⅰ clinical trial. Urology, 2018, 121: 203.
|
52. |
Yao Y, Cai J, Zhang P, et al. Adipose stromal vascular fraction gel grafting: A new method for tissue volumization and rejuvenation. Dermatol Surg, 2018, 44(10): 1278-1286.
|
53. |
Deng CL, Yao YZ, Liu ZY, et al. Chronic wound treatment with high-density nanofat grafting combined with negative pressure wound therapy. Int J Clin Exp Med, 2019, 12(2): 1402-1411.
|
54. |
Deng C, Wang L, Feng J, et al. Treatment of human chronic wounds with autologous extracellular matrix/stromal vascular fraction gel: A STROBE-compliant study. Medicine (Baltimore), 2018, 97(32): e11667.
|
55. |
邓呈亮, 肖顺娥, 刘志远, 等. 脂肪干细胞胶在眶周年轻化中的疗效观察. 中国美容整形外科杂志, 2019, 30(6): 321-323, 327.
|
56. |
Tonnard P, Verpaele A, Peeters G, et al. Nanofat grafting: basic research and clinical applications. Plast Reconstr Surg, 2013, 132(4): 1017-1026.
|