1. |
Galipeau J, Sensébé L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell, 2018, 22(6): 824-833.
|
2. |
Sugimura R. Bioengineering hematopoietic stem cell niche toward regenerative medicine. Adv Drug Deliv Rev, 2016, 99(Pt B): 212-220.
|
3. |
谭可可, 王秀秀, 张君, 等. 壳聚糖多孔支架复合 BMSCs 移植修复大鼠创伤性脑损伤的实验研究. 中国修复重建外科杂志, 2018, 32(6): 745-752.
|
4. |
Xia P, Wang S, Qi Z, et al. BMP-2-releasing gelatin microspheres/PLGA scaffolds for bone repairment of X-ray-radiated rabbit radius defects. Artif Cells Nanomed Biotechnol, 2019, 47(1): 1662-1673.
|
5. |
邢飞, 李浪, 刘明, 等. 原位组织工程技术在骨与软骨修复领域的应用进展. 中国修复重建外科杂志, 2018, 32(10): 1358-1363.
|
6. |
Zhang HX, Zhang XP, Xiao GY, et al. In vitro and in vivo evaluation of calcium phosphate composite scaffolds containing BMP-VEGF loaded PLGA microspheres for the treatment of avascular necrosis of the femoral head. Mater Sci Eng C Mater Biol Appl, 2016, 60: 298-307.
|
7. |
Yao X, Liu Y, Gao J, et al. Nitric oxide releasing hydrogel enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction. Biomaterials, 2015, 60: 130-140.
|
8. |
Lee S, Choi E, Cha MJ, et al. Cell adhesion and long-term survival of transplanted mesenchymal stem cells: a prerequisite for cell therapy. Oxid Med Cell Longev, 2015, 2015: 632902.
|
9. |
Scheibye-Knudsen M, Fang EF, Croteau DL, et al. Protecting the mitochondrial powerhouse. Trends Cell Biol, 2015, 25(3): 158-170.
|
10. |
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev, 2014, 94(3): 909-950.
|
11. |
Zhang H, Ryu D, Wu Y, et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science, 2016, 352(6292): 1436-1443.
|
12. |
Son MJ, Kwon Y, Son T, et al. Restoration of mitochondrial NAD+ levels delays stem cell senescence and facilitates reprogramming of aged somatic cells. Stem Cells, 2016, 34(12): 2840-2851.
|
13. |
Gulshan M, Yaku K, Okabe K, et al. Overexpression of Nmnat3 efficiently increases NAD and NGD levels and ameliorates age-associated insulin resistance. Aging Cell, 2018, 17(4): e12798.
|
14. |
Dai SH, Chen T, Wang YH, et al. Sirt3 attenuates hydrogen peroxide-induced oxidative stress through the preservation of mitochondrial function in HT22 cells. Int J Mol Med, 2014, 34(4): 1159-1168.
|
15. |
Kariminekoo S, Movassaghpour A, Rahimzadeh A, et al. Implications of mesenchymal stem cells in regenerative medicine. Artif Cells Nanomed Biotechnol, 2016, 44(3): 749-757.
|
16. |
Zhang W, Zhang F, Shi H, et al. Comparisons of rabbit bone marrow mesenchymal stem cell isolation and culture methods in vitro. PLoS One, 2014, 9(2): e88794.
|
17. |
Tan SL, Ahmad TS, Selvaratnam L, et al. Isolation, characterization and the multi‐lineage differentiation potential of rabbit bone marrow‐derived mesenchymal stem cells. J Anat, 2013, 222(4): 437-450.
|
18. |
Kiriyama Y, Nochi H. Intra-and intercellular quality control mechanisms of mitochondria. Cells, 2018, 7(1): E1.
|
19. |
Lisowski P, Kannan P, Mlody B, et al. Mitochondria and the dynamic control of stem cell homeostasis. EMBO Rep, 2018, 19(5): e45432.
|
20. |
Mouthuy PA, Snelling SJB, Dakin SG, et al. Biocompatibility of implantable materials: An oxidative stress viewpoint. Biomaterials, 2016, 109: 55-68.
|
21. |
Wauquier F, Leotoing L, Coxam V, et al. Oxidative stress in bone remodelling and disease. Trends Mol Med, 2009, 15(10): 468-477.
|
22. |
Stein LR, Imai S. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol Metab, 2012, 23(9): 420-428.
|
23. |
Galindo R, Banks Greenberg M, Araki T, et al. NMNAT3 is protective against the effects of neonatal cerebral hypoxia‐ischemia. Ann Clin Transl Neurol, 2017, 4(10): 722-738.
|
24. |
Cheng Z, Ristow M. Mitochondria and metabolic homeostasis. Antioxid Redox Signal, 2013, 19(3): 240-242.
|
25. |
Abate M, Festa A, Falco M, et al. Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol, 2020, 98: 139-153.
|
26. |
Sorrentino V, Menzies KJ, Auwerx J. Repairing mitochondrial dysfunction in disease. Annu Rev Pharmacol Toxicol, 2018, 58: 353-389.
|
27. |
Hershberger KA, Martin AS, Hirschey MD. Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases. Nat Rev Nephrol, 2017, 13(4): 213-225.
|