1. |
El Saman A, Meier S, Sander A, et al. Reduced loosening rate and loss of correction following posterior stabilization with or without PMMA augmentation of pedicle screws in vertebral fractures in the elderly. Eur J Trauma Emerg Surg, 2013, 39(5): 455-460.
|
2. |
白璧辉, 谢兴文, 李鼎鹏, 等. 我国近 5 年来骨质疏松症流行病学研究现状. 中国骨质疏松杂志, 2018, 24(2): 253-258.
|
3. |
Skinner R, Maybee J, Transfeldt E, et al. Experimental pullout testing and comparison of variables in transpedicular screw fixation. A biomechanical study. Spine (Phila Pa 1976), 1990, 15(3): 195-201.
|
4. |
Chang MC, Liu CL, Chen TH. Polymethylmethacrylate augmentation of pedicle screw for osteoporotic spinal surgery: a novel technique. Spine (Phila Pa 1976), 2008, 33(10): E317-E324.
|
5. |
Santoni BG, Hynes RA, McGilvray KC, et al. Cortical bone trajectory for lumbar pedicle screws. Spine J, 2009, 9(5): 366-373.
|
6. |
Marcus HJ, Cundy TP, Nandi D, et al. Robot-assisted and fluoroscopy-guided pedicle screw placement: a systematic review. Eur Spine J, 2014, 23(2): 291-297.
|
7. |
Kaito T, Matsukawa K, Abe Y, et al. Cortical pedicle screw placement in lumbar spinal surgery with a patient-matched targeting guide: A cadaveric study. J Orthop Sci, 2018, 23(6): 865-869.
|
8. |
Babu R, Park JG, Mehta AI, et al. Comparison of superior-level facet joint violations during open and percutaneous pedicle screw placement. Neurosurgery, 2012, 71(5): 962-970.
|
9. |
Matsukawa K, Yato Y, Imabayashi H, et al. Biomechanical evaluation of lumbar pedicle screws in spondylolytic vertebrae: comparison of fixation strength between the traditional trajectory and a cortical bone trajectory. J Neurosurg Spine, 2016, 24(6): 910-915.
|
10. |
Matsukawa K, Yato Y, Kato T, et al. In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique. Spine (Phila Pa 1976), 2014, 39(4): E240-E245.
|
11. |
Kojima K, Asamoto S, Kobayashi Y, et al. Cortical bone trajectory and traditional trajectory—a radiological evaluation of screw-bone contact. Acta Neurochir (Wien), 2015, 157(7): 1173-1178.
|
12. |
金海明, 徐道亮, 潘翔翔, 等. 椎弓根皮质骨螺钉固定与传统椎弓根螺钉固定钉道周围骨质 CT 值比较. 中国脊柱脊髓杂志, 2016, 26(12): 1115-1120.
|
13. |
杨民毅, 刘西纺, 刘世长, 等. 皮质骨螺钉通道技术在骨质疏松腰椎退行性疾病中的应用. 实用骨科杂志, 2019, 25(3): 245-249.
|
14. |
钱立雄, 郝定均, 孙宏慧, 等. 骨水泥强化椎弓根螺钉固定与皮质骨轨迹螺钉固定治疗腰椎退变性疾病合并骨质疏松的效果比较. 临床医学研究与实践, 2019, 4(13): 87-90.
|
15. |
Ueno M, Imura T, Inoue G, et al. Posterior corrective fusion using a double-trajectory technique (cortical bone trajectory combined with traditional trajectory) for degenerative lumbar scoliosis with osteoporosis: technical note. J Neurosurg Spine, 2013, 19(5): 600-607.
|
16. |
Takata Y, Matsuura T, Higashino K, et al. Hybrid technique of cortical bone trajectory and pedicle screwing for minimally invasive spine reconstruction surgery: a technical note. J Med Invest, 2014, 61(3-4): 388-392.
|
17. |
沈为光, 何伯圣, 龚沈初. 腰椎后路固定融合术后邻近节段退变的研究进展. 医学综述, 2019, 25(14): 2832-2836.
|
18. |
李超, 阮狄克, 何勍, 等. 腰椎减压融合术中保留头端后部韧带复合体结构完整性对相邻节段退变的影响. 脊柱外科杂志, 2016, 14(5): 262-266.
|
19. |
Wang H, Ma L, Yang D, et al. Incidence and risk factors for the progression of proximal junctional kyphosis in degenerative lumbar scoliosis following long instrumented posterior spinal fusion. Medicine (Baltimore), 2016, 95(32): e4443.
|
20. |
Etebar S, Cahill DW. Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumentation for degenerative instability. J Neurosurg, 1999, 90(2 Suppl): 163-169.
|
21. |
Min JH, Jang JS, Jung BJ, et al. The clinical characteristics and risk factors for the adjacent segment degeneration in instrumented lumbar fusion. J Spinal Disord Tech, 2008, 21(5): 305-309.
|
22. |
Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: a meta-analysis. Spine (Phila Pa 1976), 2007, 32(3): E111-E120.
|
23. |
杨俊松, 郝定均, 刘团江, 等. 脊柱机器人与透视辅助下经皮植钉治疗腰椎滑脱症中植钉精度的对比研究. 中国修复重建外科杂志, 2018, 32(11): 1371-1376.
|
24. |
田野, 张嘉男, 陈浩, 等. 脊柱机器人与传统透视辅助下微创经皮复位内固定术治疗单节段无神经症状胸腰椎骨折对比研究. 中国修复重建外科杂志, 2020, 34(1): 69-75.
|