1. |
Gee CM, Currie KD, Phillips AA, et al. Spinal cord injury impairs cardiovascular capacity in elite wheelchair rugby athletes. Clin J Sport Med, 2020, 30(1): 33-39.
|
2. |
Aghayan HR, Arjmand B, Yaghoubi M, et al. Clinical outcome of autologous mononuclear cells transplantation for spinal cord injury: a systematic review and meta-analysis. Med J Islam Repub Iran, 2014, 28: 112.
|
3. |
Figueiredo N. Motor exam of patients with spinal cord injury: a terminological imbroglio. Neurol Sci, 2017, 38(7): 1159-1165.
|
4. |
Li S, Ou Y, Li C, et al. Therapeutic effect of methylprednisolone combined with high frequency electrotherapy on acute spinal cord injury in rats. Exp Ther Med, 2019, 18(6): 4682-4688.
|
5. |
Kumar H, Ropper AE, Lee SH, et al. Propitious therapeutic modulators to prevent blood-spinal cord barrier disruption in spinal cord injury. Mol Neurobiol, 2017, 54(5): 3578-3590.
|
6. |
Bartanusz V, Jezova D, Alajajian B, et al. The blood-spinal cord barrier: morphology and clinical implications. Ann Neurol, 2011, 70(2): 194-206.
|
7. |
Lee JY, Choi HY, Na WH, et al. Ghrelin inhibits BSCB disruption/hemorrhage by attenuating MMP-9 and SUR1/TrpM4 expression and activation after spinal cord injury. Biochim Biophys Acta, 2014, 1842(12 Pt A): 2403-2412.
|
8. |
Lee JY, Choi HY, Na WH, et al. 17β-estradiol inhibits MMP-9 and SUR1/TrpM4 expression and activation and thereby attenuates BSCB disruption/hemorrhage after spinal cord injury in male rats. Endocrinology, 2015, 156(5): 1838-1850.
|
9. |
Sharma HS. Pathophysiology of blood-spinal cord barrier in traumatic injury and repair. Curr Pharm Des, 2005, 11(11): 1353-1389.
|
10. |
Arhart RW. A possible haemodynamic mechanism for amyotrophic lateral sclerosis. Med Hypotheses, 2010, 75(4): 341-346.
|
11. |
Tong M, He Z, Lin X, et al. Lithium chloride contributes to blood-spinal cord barrier integrity and functional recovery from spinal cord injury by stimulating autophagic flux. Biochem Biophys Res Commun, 2018, 495(4): 2525-2531.
|
12. |
He Z, Zhou Y, Wang Q, et al. Inhibiting endoplasmic reticulum stress by lithium chloride contributes to the integrity of blood-spinal cord barrier and functional recovery after spinal cord injury. Am J Transl Res, 2017, 9(3): 1012-1024.
|
13. |
Gong M, Yu B, Wang J, et al. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget, 2017, 8(28): 45200-45212.
|
14. |
Zhang T, Tian F, Wang J, et al. Atherosclerosis-associated endothelial cell apoptosis by miR-429-mediated down regulation of Bcl-2. Cell Physiol Biochem, 2015, 37(4): 1421-1430.
|
15. |
Ge L, Wang Y, Cao Y, et al. MiR-429 improved the hypoxia tolerance of human amniotic cells by targeting HIF-1α. Biotechnol Lett, 2018, 40(11-12): 1477-1486.
|
16. |
Chen L, Xue Y, Zheng J, et al. MiR-429 regulated by endothelial monocyte activating polypeptide-Ⅱ(EMAP-Ⅱ) influences blood-tumor barrier permeability by inhibiting the expressions of ZO-1, Occludin and Claudin-5. Front Mol Neurosci, 2018, 11: 35.
|
17. |
Fan B, Wei Z, Yao X, et al. Microenvironment imbalance of spinal cord injury. Cell Transplant, 2018, 27(6): 853-866.
|
18. |
Fang B, Qin M, Li Y, et al. Electroacupuncture preconditioning and postconditioning inhibit apoptosis and neuroinflammation induced by spinal cord ischemia reperfusion injury through enhancing autophagy in rats. Neurosci Lett, 2017, 642: 136-141.
|
19. |
曲林, 李刚, 毕云龙, 等. 缺氧损伤后血红素加氧酶 1 截短体 (HO-1Cδ23) 上调 miR-125a-5p 降低血脊髓屏障的通透性. 细胞与分子免疫学杂志, 2018, 34(8): 725-731.
|
20. |
He Z, Zou S, Yin J, et al. Inhibition of ndoplasmic reticulum stress preserves the integrity of blood-spinal cord barrier in diabetic rats subjected to spinal cord injury. Sci Rep, 2017, 7(1): 7661.
|
21. |
Kuntner C, Bankstahl JP, Bankstahl M, et al. Dose-response assessment of tariquidar and elacridar and regional quantification of P-glycoprotein inhibition at the rat blood-brain barrier using (R)-[(11)C]verapamil PET. Eur J Nucl Med Mol Imaging, 2010, 37(5): 942-953.
|
22. |
Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development, 2005, 132(21): 4653-4662.
|
23. |
Wu CL, Ho JY, Hung SH, et al. miR-429 expression in bladder cancer and its correlation with tumor behavior and clinical outcome. Kaohsiung J Med Sci, 2018, 34(6): 335-340.
|
24. |
Machackova T, Mlcochova H, Stanik M, et al. MiR-429 is linked to metastasis and poor prognosis in renal cell carcinoma by affecting epithelial-mesenchymal transition. Tumour Biol, 2016, 37(11): 14653-14658.
|
25. |
Samantarrai D, Mallick B. miR-429 inhibits metastasis by targeting KIAA0101 in soft tissue sarcoma. Exp Cell Res, 2017, 357(1): 33-39.
|
26. |
Xu H, Jin L, Chen Y, et al. Downregulation of microRNA-429 protects cardiomyocytes against hypoxia-induced apoptosis by increasing Notch1 expression. Int J Mol Med, 2016, 37(6): 1677-1685.
|
27. |
Chen DQ, Li YC, Li YF, et al. Tumor suppressive microRNA-429 regulates cellular function by targeting VEGF in clear cell renal cell carcinoma. Molecular Medicine Reports, 2016, 13(2): 1361-1366.
|
28. |
Yu T, Lu XJ, Li JY, et al. Overexpression of miR-429 impairs intestinal barrier function in diabetic mice by down-regulating occludin expression. Cell Tissue Res, 2016, 366(2): 341-352.
|