• 1. Department of Orthopedics, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, 121000, P.R.China;
  • 2. Department of Orthopedics, General Hospital of Fuxin Mining Group, Liaoning Health Industry Group, Fuxin Liaoning, 123000, P.R.China;
YU Deshui, Email: gkyudeshui@163.com
Export PDF Favorites Scan Get Citation

Objective To explore the feasibility and mechanism of inhibiting miR-429 to improve the permeability of the blood spinal cord barrier (BSCB) in vitro, and provide a new gene therapy target for enhancing the spinal cord microenvironment.Methods First, the immortalized human brain microvascular endothelial cell line (hCMEC/D3) was transfected with the anti-miR-429 antagonist (antagomiR-429) and its negative control (antagomiR-429-NC), respectively. The miR-429 expression of hCMEC/D3 cells was observed by fluorescence microscopy and real-time fluorescence quantitative PCR to verify the transfection efficiency of antagomiR-429. Then the effect of miR-429 on BSCB permeability was observed in vitro. The experiment was divided into 4 groups. The blank control group (group A) was constructed of normal hCMEC/D3 cells and Ha-sc cells to prepare the BSCB model, the hypoxia-induced group (group B), the hypoxia-induced+antagomiR-429-NC group (group C), and the hypoxia-induced+antagomiR-429 group (group D) were constructed of normal, antagomiR-429-NC transfected, and antagomiR-429 transfected hCMEC/D3 cells and Ha-sc cells to prepare the BSCB models and hypoxia treatment for 12 hours. The permeability of BSCB in vitro was measured by horseradish peroxidase (HRP) permeability. Real-time fluorescence quantitative PCR, Western blot, and immunofluorescence staining were used to observe the expressions of ZO-1, Occludin, and Claudin-5.Results The antagomiR-429 and antagomiR-429-NC were successfully transfected into hCMEC/D3 cells under a fluorescence microscope, and the transfection efficiency was about 90%. Real-time fluorescence quantitative PCR results showed that the relative expression of miR-429 in antagomiR-429 group was 0.109±0.013, which was significantly lower than that of antagomiR-429-NC group (0.956±0.004, P<0.05). HRP permeability measurement, real-time fluorescence quantitative PCR, and Western blot results showed that the HRP permeability of groups B and C were significantly higher than those of groups A and D (P<0.05), and the relative expressions of ZO-1, Occludin, and Claudin-5 proteins and mRNAs were significantly lower in groups B and C than in groups A and D (P<0.05) and in group D than in group A (P<0.05); there was no significant difference between groups B and C (P>0.05). Immunofluorescence staining showed that the immunofluorescence of ZO-1, Occudin, and Claudin-5 at the cell membrane boundary in group D were stronger than those in groups B and C, but not as strong as that in group A.Conclusion Inhibition of miR-429 expression can promote the expressions of ZO-1, Occludin, and Claudin-5 proteins in microvascular endothelial cells, thereby improving the increased permeability of BSCB due to hypoxia.

Citation: SUN Rui, YU Deshui. Inhibitory effect of miR-429 on expressions of ZO-1, Occludin, and Claudin-5 proteins to improve the permeability of blood spinal cord barrier in vitro. Chinese Journal of Reparative and Reconstructive Surgery, 2020, 34(9): 1163-1169. doi: 10.7507/1002-1892.202001097 Copy

  • Previous Article

    Efficacy and safety of tranexamic acid sequential rivaroxaban on blood loss in elderly patients during lumbar interbody fusion
  • Next Article

    Three-dimensional printed Ti6Al4V-4Cu alloy promotes osteogenic gene expression through bone immune regulation