1. |
Lamb JN, Panteli M, Pneumaticos SG, et al. Epidemiology of pertrochanteric fractures: our institutional experience. Eur J Trauma Emerg Surg, 2014, 40(3): 225-232.
|
2. |
Efstathopoulos NE, Nikolaou VS, Lazarettos JT. Intramedullary fixation of intertrochanteric hip fractures: a comparison of two implant designs. Int Orthop, 2007, 31(1): 71-76.
|
3. |
Kaufer H. Mechanics of the treatment of hip injuries. Clin Orthop Relat Res, 1980, (146): 53-61.
|
4. |
Stern R, Lübbeke A, Suva D, et al. Prospective randomised study comparing screw versus helical blade in the treatment of low-energy trochanteric fractures. Int Orthop, 2011, 35(12): 1855-1861.
|
5. |
Nishiura T, Nozawa M, Morio H. The new technique of precise insertion of lag screw in an operative treatment of trochanteric femoral fractures with a short intramedullary nail. Injury, 2009, 40(10): 1077-1083.
|
6. |
Baumgaertner MR, Curtin SL, Lindskog DM, et al. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg (Am), 1995, 77(7): 1058-1064.
|
7. |
Ruecker AH, Rupprecht M, Gruber M, et al. The treatment of intertrochanteric fractures: results using an intramedullary nail with integrated cephalocervical screws and linear compression. J Orthop Trauma, 2009, 23(1): 22-30.
|
8. |
De Bruijn K, den Hartog D, Tuinebreijer W, et al. Reliability of predictors for screw cutout in intertrochanteric hip fractures. J Bone Joint Surg (Am), 2012, 94(14): 1266-1272.
|
9. |
Ibrahim I, Appleton PT, Wixted JJ, et al. Implant cut-out following cephalomedullary nailing of intertrochanteric femur fractures: are helical blades to blame? Injury, 2019, 50(4): 926-930.
|
10. |
Goffin JM, Jenkins PJ, Ramaesh R, et al. What is the relevance of the tip-apex distance as a predictor of lag screw cut-out? PLoS One, 2013, 8(8): e71195.
|
11. |
Kuzyk PR, Zdero R, Shah S, et al. Femoral head lag screw position for cephalomedullary nails: a biomechanical analysis. J Orthop Trauma, 2012, 26(7): 414-421.
|
12. |
Born CT, Karich B, Bauer C, et al. Hip screw migration testing: first results for hip screws and helical blades utilizing a new oscillating test method. J Orthop Res, 2011, 29(5): 760-766.
|
13. |
Liu W, Zhou D, Liu F, et al. Mechanical complications of intertrochanteric hip fractures treated with trochanteric femoral nails. J Trauma Acute Care Surg, 2013, 75(2): 304-310.
|
14. |
Nikoloski AN, Osbrough AL, Yates PJ. Should the tip-apex distance (TAD) rule be modified for the proximal femoral nail antirotation (PFNA)? A retrospective study. J Orthop Surg Res, 2013, 8: 35.
|
15. |
Rubio-Avila J, Madden K, Simunovic N, et al. Tip to apex distance in femoral intertrochanteric fractures: a systematic review. J Orthop Sci, 2013, 18(4): 592-598.
|
16. |
Kane P, Vopat B, Heard W, et al. Is tip apex distance as important as we think? A biomechanical study examining optimal lag screw placement. Clin Orthop Relat Res, 2014, 472(8): 2492-2498.
|
17. |
高令军, 裘世静. 股骨距的三维结构和显微结构特征及其力学意义. 中华骨科杂志, 1999, 19(2): 109-112.
|
18. |
Li S, Chang SM, Jin YM, et al. A mathematical simulation of the tip-apex distance and the calcar-referenced tip-apex distance for intertrochanteric fractures reduced with lag screws. Injury, 2016, 47(6): 1302-1308.
|
19. |
李双, 张立智, 张世民. 尖顶距与股距尖顶距的研究进展. 中华创伤骨科杂志, 2016, 18(8): 733-736.
|
20. |
李海丰, 王华, 张英琪, 等. 头髓钉治疗高龄股骨转子间骨折的尖顶距与螺旋刀片移位的关系. 中国修复重建外科杂志, 2019, 33(10): 1234-1238.
|
21. |
John B, Sharma A, Mahajan A, et al. Tip-apex distance and other predictors of outcome in cephalomedullary nailing of unstable trochanteric fractures. J Clin Orthop Trauma, 2019, 10(Suppl 1): S88-S94.
|