1. |
Kasir R, Vernekar VN, Laurencin CT. Regenerative engineering of cartilage using adipose-derived stem cells. Regen Eng Transl Med, 2015, 1(1): 42-49.
|
2. |
吴敏靓, 王宇翀, 薛春雨. 脂肪来源干细胞在修复重建领域的研究及应用进展. 中国美容整形外科杂志, 2018, 29(12): 752-756.
|
3. |
Bertozzi N, Simonacci F, Grieco MP, et al. The biological and clinical basis for the use of adipose-derived stem cells in the field of wound healing. Ann Med Surg (Lond), 2017, 20: 41-48.
|
4. |
Torres-Torrillas M, Rubio M, Damia E, et al. Adipose-derived mesenchymal stem cells: a promising tool in the treatment of musculoskeletal diseases. Int J Mol Sci, 2019, 20(12): 3105.
|
5. |
Ge G, Zhang H, Li R, et al. The function of SDF-1-CXCR4 Axis in SP cells-mediated protective role for renal ischemia/reperfusion injury by SHH/GLI1-ABCG2 pathway. Shock, 2017, 47(2): 251-259.
|
6. |
Herrmann M, Verrier S, Alini M. Strategies to stimulate mobilization and homing of endogenous stem and progenitor cells for bone tissue repair. Front Bioeng Biotechnol, 2015, 3: 79.
|
7. |
Villalvilla A, Gomez R, Roman-Blas JA, et al. SDF-1 signaling: A promising target in rheumatic diseases. Expert Opin Ther Targets, 2014, 18(9): 1077-1087.
|
8. |
闫亚洲, 唐海双, 黄清海. SDF-1α/CXCR4 信号通路在颅内动脉瘤中的研究进展. 中国临床医学, 2019, 26(1): 122-125.
|
9. |
方满, 纪世召, 夏照帆. 趋化物质诱导间充质干细胞修复损伤组织的研究进展. 实用医学杂志, 2016, 32(23): 3961-3964.
|
10. |
Kim SM, Kim YH, Jun YJ, et al. The effect of diabetes on the wound healing potential of adipose-tissue derived stem cells. Int Wound J, 2016, 13 Suppl 1: 33-41.
|
11. |
Wang B, Ma X, Zhao L, et al. Injection of basic fibroblast growth factor together with adipose-derived stem cell transplantation: improved cardiac remodeling and function in myocardial infarction. Clin Exp Med, 2016, 16(4): 539-550.
|
12. |
Chen C, Yan Q, Yan Y, et al. MicroRNA-1 regulates the differentiation of adipose-derived stem cells into cardiomyocyte-like cells. Stem Cells Int, 2018, 2018: 7494530.
|
13. |
Huang CW, Lu SY, Huang TC, et al. FGF9 induces functional differentiation to Schwann cells from human adipose derived stem cells. Theranostics, 2020, 10(6): 2817-2831.
|
14. |
Pak J, Lee JH, Pak N, et al. Cartilage regeneration in humans with adipose tissue-derived stemcells and adipose stromal vascular fraction cells: updated status. Int J Mol Sci, 2018, 19(7): E2146.
|
15. |
Kyriakidis T, Iosifidis M, Michalopoulos E, et al. Good mid-term outcomes after adipose-derived culture-expanded mesenchymal stem cells implantation in knee focal cartilage defects. Knee Surg Sports Traumatol Arthrosc, 2020, 28(2): 502-508.
|
16. |
Vilahur G, Oñate B, Cubedo J, et al. Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium: systems biology study. Stem Cell Res Ther, 2017, 8(1): 52.
|
17. |
Yiou R, Mahrouf-Yorgov M, Trébeau C, et al. Delivery of human mesenchymal adipose-derived stem cells restores multiple urological dysfunctions in a rat model mimicking radical prostatectomy damages through tissue-specific paracrine mechanisms. Stem Cells, 2016, 34(2): 392-404.
|
18. |
Wang YC, Wallace CG, Pai BC, et al. Orthognathic surgery with simultaneous autologous fat transfer for correction of facial asymmetry. Plast Reconstr Surg, 2017, 139(3): 693-700.
|
19. |
Dufrane D, Docquier PL, Delloye C, et al. Scaffold-free three-dimensional graft from autologous adipose-derived stem cells for large bone defect reconstruction: clinical proof of concept. Medicine (Baltimore), 2015, 94(50): e2220.
|
20. |
Gómez-de Frutos MC, Laso-García F, Diekhorst L, et al. Intravenous delivery of adipose tissue-derived mesenchymal stem cells improves brain repair in hyperglycemic stroke rats. Stem Cell Res Ther, 2019, 10(1): 212.
|
21. |
Chen KH, Chen CH, Wallace CG, et al. Intravenous administration of xenogenic adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduced brain infarct volume and preserved neurological function in rat after acute ischemic stroke. Oncotarget, 2016, 7(46): 74537-74556.
|
22. |
Omar AM, Meleis AE, Arfa SA, et al. Comparative study of the therapeutic potential of mesenchymal stem cells derived from adipose tissue and bone marrow on acute myocardial infarction model. Oman Med J, 2019, 34(6): 534-543.
|
23. |
Lin KC, Yip HK, Shao PL, et al. Combination of adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes for protecting kidney from acute ischemia-reperfusion injury. Int J Cardiol, 2016, 216: 173-185.
|
24. |
王树英. 脂肪干细胞移植联合乌司他丁对急性肠缺血再灌注损伤的影响. 中国组织工程研究, 2018, 22(29): 4601-4606.
|
25. |
Freyman T, Polin G, Osman H, et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J, 2006, 27(9): 1114-1122.
|
26. |
Kimura Y, Komaki M, Iwasaki K, et al. Recruitment of bone marrow-derived cells to periodontal tissue defects. Front Cell Dev Biol, 2014, 2: 19.
|
27. |
Park S, Jang H, KIm BS, et al. Directional migration of mesenchymal stem cells under an SDF-1alpha gradient on a microfluidic device. PLoS One, 2017, 12(9): e0184595.
|
28. |
Teixidó J, Martínez-Moreno M, Díaz-Martínez M, et al. The good and bad faces of the CXCR4 chemokine receptor. Int J Biochem Cell Biol, 2018, 95: 121-131.
|
29. |
Wu Q, Ji FK, Wang JH, et al. Stromal cell-derived factor 1 promoted migration of adipose-derived stem cells to the wounded area in traumatic rats. Biochem Biophys Res Commun, 2015, 467(1): 140-145.
|
30. |
Lv B, Yang X, Lv S, et al. CXCR4 signaling induced epithelial-mesenchymal transition by PI3K/AKT and ERK pathways in glioblastoma. Mol Neurobiol, 2015, 52(3): 1263-1268.
|
31. |
He H, Zhao ZH, Han FS, et al. Activation of protein kinase C ε enhanced movement ability and paracrine function of rat bone marrow mesenchymal stem cells partly at least independent of sdf-1/cxcr4 axis and pi3k/akt pathway. Int J Clin Exp Med, 2015, 8(1): 188-202.
|
32. |
Gleeson BM, Martin K, Ali MT, et al. Bone marrow-derived mesenchymal stem cells have innate procoagulant activity and cause microvascular obstruction following intracoronary delivery: amelioration by antithrombin therapy. Stem Cells, 2015, 33(9): 2726-2737.
|