1. |
Wang L, Liu J, Chin D. Progress in tuberculosis control and the evolving public-health system in China. Lancet (London, England), 2007, 369(9562): 691-696.
|
2. |
Yao Y, Song W, Wang K, et al. Features of 921 patients with spinal tuberculosis: A 16-year investigation of a general hospital in southwest China. Orthopedics, 2017, 40(6): e1017-e1023.
|
3. |
Authorless. The epidemiology of spinal tuberculosis in the United States: an analysis of 2002-2011 data. J Neurosurg Spine, 2017, 26(4): 507-512.
|
4. |
毛贝尼, 张钟, 付维力, 等. 中国骨质疏松性骨折疾病负担的系统评价. 中国循证医学杂志, 2018, 18(2): 151-155.
|
5. |
张思萌, 李放, 刘秀梅, 等. 老年人胸腰椎椎弓根螺钉内固定术后螺钉松动原因分析. 中华老年医学杂志, 2015, 34(11): 1178-1181.
|
6. |
Galbusera F, Volkheimer D, Reitmaier S, et al. Pedicle screw loosening: a clinically relevant complication? Eur Spine J, 2015, 24(5): 1005-1016.
|
7. |
Hoppe S, Keel MJ. Pedicle screw augmentation in osteoporotic spine: indications, limitations and technical aspects. Eur J Trauma Emerg Surg, 2017, 43(1): 3-8.
|
8. |
Chen YY, Feng JY, Ting WY, et al. Increased risk of incident osteoporosis and osteoporotic fracture in tuberculosis patients: a population-based study in a tuberculosis-endemic area. Osteoporos Int, 2017, 28(5): 1711-1721.
|
9. |
荆丹峰, 许艺荠, 孙太存, 等. 骨水泥注入中空侧孔椎弓根螺钉内固定骨质疏松性腰椎退变: 强化技术要点. 中国组织工程研究, 2014, 18(47): 7556-7560.
|
10. |
樊仕才, 江振华, 朱青安, 等. 聚甲基丙烯酸甲酯强化椎弓根螺钉内固定对骨质疏松不稳定性胸腰椎损伤稳定性的影响. 中华创伤杂志, 2003, 19(6): 358-361.
|
11. |
吴志彬, 刘宏建, 尚国伟, 等. 骨水泥强化与常规椎弓根螺钉固定治疗老年退行性腰椎疾病的比较. 中华骨科杂志, 2015, 35(10): 983-989.
|
12. |
Zou MX, Wang XB, Li J, et al. Spinal tuberculosis of the lumbar spine after percutaneous vertebral augmentation (vertebroplasty or kyphoplasty). Spine J, 2015, 15(6): e1-6.
|
13. |
Ge CY, He LM, Zheng YH, et al. Tuberculous spondylitis following kyphoplasty: a case report and review of the literature. Medicine (Baltimore), 2016, 95(11): e2940.
|
14. |
Jia-Jia S, Zhi-Yong S, Zhong-Lai Q, et al. Tuberculous spondylitis after vertebral augmentation: A case report with a literature review. J Int Med Res, 2018, 46(2): 916-924.
|
15. |
Khanna K, Sabharwal S. Spinal tuberculosis: a comprehensive review for the modern spine surgeon. Spine J, 2019, 19(11): 1858-1870.
|
16. |
Wang YX, Zhang HQ, Li M, et al. Debridement, interbody graft using titanium mesh cages, posterior instrumentation and fusion in the surgical treatment of multilevel noncontiguous spinal tuberculosis in elderly patients via a posterior-only. Injury, 2017, 48(2): 378-383.
|
17. |
徐晓杰, 李梅. 废用性骨质疏松症诊治进展. 中华骨质疏松和骨矿盐疾病杂志, 2015, 8(1): 69-73.
|
18. |
Gupta KB, Gupta R, Atreja A, et al. Tuberculosis and nutrition. Lung India, 2009, 26(1): 9-16.
|
19. |
Okamura K, Nagata N, Wakamatsu K, et al. Hypoalbuminemia and lymphocytopenia are predictive risk factors for in-hospital mortality in patients with tuberculosis. Intern Med, 2013, 52(4): 439-444.
|
20. |
Rajasekaran S, Rishi MugeshKanna P, Shetty AP. Closing-opening wedge osteotomy for severe, rigid, thoracolumbar post-tubercular kyphosis. Eur Spine J, 2011, 20(3): 343-348.
|
21. |
Shi S, Ying X, Zheng Q, et al. Application of cortical bone trajectory screws in elderly patients with lumbar spinal tuberculosis. World Neurosurg, 2018, 117: e82-e89.
|
22. |
Chao KH, Lai YS, Chen WC, et al. Biomechanical analysis of different types of pedicle screw augmentation: a cadaveric and synthetic bone sample study of instrumented vertebral specimens. Med Eng Phys, 2013, 35(10): 1506-1512.
|
23. |
Inceoglu S, Ferrara L, McLain RF. Pedicle screw fixation strength: pullout versus insertional torque. Spine J, 2004, 4(5): 513-518.
|
24. |
Liu D, Wu ZX, Pan XM, et al. Biomechanical comparison of different techniques in primary spinal surgery in osteoporotic cadaveric lumbar vertebrae: expansive pedicle screw versus polymethylmethacrylate-augmented pedicle screw. Arch Orthop Trauma Surg, 2011, 131(9): 1227-1232.
|
25. |
Yuan Q, Zhang G, Wu J, et al. Clinical evaluation of the polymethylmethacrylate-augmented thoracic and lumbar pedicle screw fixation guided by the three-dimensional navigation for the osteoporosis patients. Eur Spine J, 2015, 24(5): 1043-1050.
|
26. |
Kueny RA, Kolb JP, Lehmann W, et al. Influence of the screw augmentation technique and a diameter increase on pedicle screw fixation in the osteoporotic spine: pullout versus fatigue testing. Eur Spine J, 2014, 23(10): 2196-2202.
|
27. |
Tai CL, Tsai TT, Lai PL, et al. A biomechanical comparison of expansive pedicle screws for severe osteoporosis: The effects of screw design and cement augmentation. PLoS One, 2015, 10(12): e0146294.
|
28. |
Wang W, Baran GR, Garg H, et al. The benefits of cement augmentation of pedicle screw fixation are increased in osteoporotic bone: A finite element analysis. Spine Deform, 2014, 2(4): 248-259.
|
29. |
Weiser L, Huber G, Sellenschloh K, et al. Time to augment?! Impact of cement augmentation on pedicle screw fixation strength depending on bone mineral density. Eur Spine J, 2018, 27(8): 1964-1971.
|
30. |
Chandra VV, Prasad BC, Jagadeesh MA, et al. Segmental polymethylmethacrylate-augmented fenestrated pedicle screw fixation for lumbar spondylolisthesis in patients with osteoporosis—A case series and review of literature. Neurol India, 2017, 65(1): 89-95.
|
31. |
Frankel BM, D’Agostino S, Wang C. A biomechanical cadaveric analysis of polymethylmethacrylate-augmented pedicle screw fixation. J Neurosurg Spine, 2007, 7(1): 47-53.
|
32. |
刘达, 谢庆云, 张波, 等. 重度骨质疏松腰椎中椎弓根螺钉稳定性与骨水泥注射剂量的相关性. 中国脊柱脊髓杂志, 2015, 25(4): 355-360.
|
33. |
Choma TJ, Frevert WF, Carson WL, et al. Biomechanical analysis of pedicle screws in osteoporotic bone with bioactive cement augmentation using simulated in vivo multicomponent loading. Spine (Phila Pa 1976), 2011, 36(6): 454-462.
|
34. |
Moon BJ, Cho BY, Choi EY, et al. Polymethylmethacrylate-augmented screw fixation for stabilization of the osteoporotic spine: a three-year follow-up of 37 patients. J Korean Neurosurg Soc, 2009, 46(4): 305-311.
|
35. |
Lin HH, Chang MC, Wang ST, et al. The fates of pedicle screws and functional outcomes in a geriatric population following polymethylmethacrylate augmentation fixation for the osteoporotic thoracolumbar and lumbar burst fractures with mean ninety five month follow-up. Int Orthop, 2018, 42(6): 1313-1320.
|
36. |
Hu MH, Wu HT, Chang MC, et al. Polymethylmethacrylate augmentation of the pedicle screw: the cement distribution in the vertebral body. Eur Spine J, 2011, 20(8): 1281-1288.
|
37. |
Martín-Fernández M, López-Herradón A, Piñera AR, et al. Potential risks of using cement-augmented screws for spinal fusion in patients with low bone quality. Spine J, 2017, 17(8): 1192-1199.
|
38. |
Paré PE, Chappuis JL, Rampersaud R, et al. Biomechanical evaluation of a novel fenestrated pedicle screw augmented with bone cement in osteoporotic spines. Spine (Phila Pa 1976), 2011, 36(18): E1210-1214.
|
39. |
Guo HZ, Tang YC, Guo DQ, et al. The cement leakage in cement-augmented pedicle screw instrumentation in degenerative lumbosacral diseases: a retrospective analysis of 202 cases and 950 augmented pedicle screws. Eur Spine J, 2019, 28(7): 1661-1669.
|
40. |
Tan QC, Wu JW, Peng F, et al. Augmented PMMA distribution: improvement of mechanical property and reduction of leakage rate of a fenestrated pedicle screw with diameter-tapered perforations. J Neurosurg Spine, 2016, 24(6): 971-977.
|
41. |
Liu D, Zhang B, Xie QY, et al. Biomechanical comparison of pedicle screw augmented with different volumes of polymethylmethacrylate in osteoporotic and severely osteoporotic cadaveric lumbar vertebrae: an experimental study. Spine J, 2016, 16(9): 1124-1132.
|
42. |
Watanabe K, Lenke LG, Bridwell KH, et al. Proximal junctional vertebral fracture in adults after spinal deformity surgery using pedicle screw constructs: analysis of morphological features. Spine (Phila Pa 1976), 2010, 35(2): 138-145.
|