1. |
García-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone, 2015, 81: 112-121.
|
2. |
Sen MK, Miclau T. Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury, 2007, 38 Suppl 1: S75-S80.
|
3. |
Hou T, Li Z, Luo F, et al. A composite demineralized bone matrix—self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow. Biomaterials, 2014, 35(22): 5689-5699.
|
4. |
Luo K, Gao X, Gao Y, et al. Multiple integrin ligands provide a highly adhesive and osteoinductive surface that improves selective cell retention technology. Acta Biomater, 2019, 85: 106-116.
|
5. |
Yang M, Li CJ, Xiao Y, et al. Ophiopogonin D promotes bone regeneration by stimulating CD31 hi EMCN hi vessel formation. Cell Prolif, 2020, 53(4): e12784.
|
6. |
Yousif LF, Di Russo J, Sorokin L. Laminin isoforms in endothelial and perivascular basement membranes. Cell Adh Migr, 2013, 7(1): 101-110.
|
7. |
Kikkawa Y, Sugawara Y, Harashima N, et al. Identification of laminin α5 short arm peptides active for endothelial cell attachment and tube formation. J Pept Sci, 2017, 23(7-8): 666-673.
|
8. |
Segarra M, Aburto MR, Cop F, et al. Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system. Science, 2018, 361(6404): eaao2861.
|
9. |
Dou C, Ding N, Luo F, et al. Graphene-based microRNA transfection blocks preosteoclast fusion to increase bone formation and vascularization. Adv Sci (Weinh), 2018, 5(2): 1700578.
|
10. |
Xu WL, Ong HS, Zhu Y, et al. In situ release of VEGF enhances osteogenesis in 3D porous scaffolds engineered with osterix-modified adipose-derived stem cells. Tissue Eng Part A, 2017, 23(9-10): 445-457.
|
11. |
Yu WL, Sun TW, Qi C, et al. Enhanced osteogenesis and angiogenesis by mesoporous hydroxyapatite microspheres-derived simvastatin sustained release system for superior bone regeneration. Sci Rep, 2017, 7: 44129.
|
12. |
Peng KY, Liu YH, Li YW, et al. Extracellular matrix protein laminin enhances mesenchymal stem cell (MSC) paracrine function through αvβ3/CD61 integrin to reduce cardiomyocyte apoptosis. J Cell Mol Med, 2017, 21(8): 1572-1583.
|
13. |
Yeo IS, Min SK, Kang HK, et al. Identification of a bioactive core sequence from human laminin and its applicability to tissue engineering. Biomaterials, 2015, 73: 96-109.
|
14. |
Ljung K, Grönlund A, Felldin U, et al. Human fetal cardiac mesenchymal stromal cells differentiate in vivo into endothelial cells and contribute to vasculogenesis in immunocompetent mice. Stem Cells Dev, 2019, 28(5): 310-318.
|
15. |
Shan N, Zhang X, Xiao X, et al. The role of laminin α4 in human umbilical vein endothelial cells and pathological mechanism of preeclampsia. Reprod Sci, 2015, 22(8): 969-979.
|
16. |
Ishikawa T, Wondimu Z, Oikawa Y, et al. Monoclonal antibodies to human laminin α4 chain globular domain inhibit tumor cell adhesion and migration on laminins 411 and 421, and binding of α6β1 integrin and MCAM to α4-laminins. Matrix Biol, 2014, 36: 5-14.
|
17. |
Schmohl KA, Mueller AM, Dohmann M, et al. Integrin αvβ3-mediated effects of thyroid hormones on mesenchymal stem cells in tumor angiogenesis. Thyroid, 2019, 29(12): 1843-1857.
|
18. |
Bazzazi H, Zhang Y, Jafarnejad M, et al. Computational modeling of synergistic interaction between αVβ3 integrin and VEGFR2 in endothelial cells: Implications for the mechanism of action of angiogenesis-modulating integrin-binding peptides. J Theor Biol, 2018, 455: 212-221.
|
19. |
Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature, 2014, 507(7492): 323-328.
|
20. |
Verstappen J, Jin J, Kocer G, et al. RGD-functionalized supported lipid bilayers modulate pre-osteoblast adherence and promote osteogenic differentiation. J Biomed Mater Res A, 2020, 108(4): 923-937.
|